当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > 已知一个平面,那么对于空间内的任意一条直线,在平面内一定存在一条直线,使得与( )A.平行B.垂直C.异面D.相交...
题目
题型:不详难度:来源:
已知一个平面,那么对于空间内的任意一条直线,在平面内一定存在一条直线,使得( )
A.平行B.垂直C.异面D.相交

答案
B
解析

分析:本题可以从直线与平面的位置关系入手:直线与平面的位置关系可以分为三种:直线在平面内、直线与平面相交、直线与平面平行,在这三种情况下在讨论平面中的直线与已知直线的关系,通过比较可知:每种情况都有可能垂直.
解答:解:当直线a与平面α相交时,平面α内的任意一条直线与直线a的关系只有两种:异面、相交,此时就不可能平行了,故A错.
不管直线a与平面α的位置关系相交、平行,还是在平面内,都可以在平面α内找到一条直线与直线b垂直,因为直线在异面与相交时都包括垂直的情况,故B正确.
当直线a在平面α内时,平面α内的任意一条直线与直线a的关系只有两种:平行、相交,此时就不可能异面了,故c错.
当直线a与平面α平行时,平面α内的任意一条直线与直线a的关系只有两种:异面、平行,此时就不可能相交了,故D错.
故选B .
核心考点
试题【已知一个平面,那么对于空间内的任意一条直线,在平面内一定存在一条直线,使得与( )A.平行B.垂直C.异面D.相交】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
中,平面的距离为( )
A.B.C.D.

题型:不详难度:| 查看答案
(本小题满分14分)如图,在一个由矩形与正三角形组合而成的平面图形中,现将正三角形沿折成四棱锥,使在平面内的射影恰好在边上.


(1)求证:平面⊥平面
(2)求直线与平面所成角的正弦值.

第20题


 
                              
题型:不详难度:| 查看答案
如图,多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF//AB,平面FBC⊥面ABCD,△FBC中BC边上的高FH=2,,则该多面体的体积为(  )

题型:不详难度:| 查看答案
在三棱锥P-ABC内,已知PA=PC=AC=,AB=BC=1,面PAC⊥面ABC,E是BC的中点.

(1)求直线PE与AC所成角的余弦值;
(2)求直线PB与平面ABC所成的角的正弦值;
(3)求点C到平面PAB的距离.
题型:不详难度:| 查看答案
在直角梯形ABCD中, A为PD的中点,如下图,
将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,

(1)求证:SA⊥平面ABCD;
(2)求二面角E-AC-D的余弦值;
(3)在线段BC上是否存在点F,使SF//平面EAC?若存在,确定F点的位置,若不存在,请说明理由?
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.