当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > 如图所示,AC为的直径,D为的中点,E为BC的中点.(Ⅰ)求证:AB∥DE;(Ⅱ)求证:2AD·CD=AC·BC....
题目
题型:不详难度:来源:
如图所示,AC为的直径,D为的中点,E为BC的中点.

(Ⅰ)求证:AB∥DE;
(Ⅱ)求证:2AD·CD=AC·BC.
答案
(Ⅰ)详见解析;(Ⅱ)详见解析.
解析

试题分析:(Ⅰ)通过连接BD,通过证明与同一条直线垂直的两条直线垂直的思路进行证明线线平行;(Ⅱ)通过证明△DAC∽△ECD,
试题解析:(Ⅰ)连接BD,因为D为的中点,所以BD=DC.因为E为BC的中点,所以DE⊥BC.
因为AC为圆的直径,所以∠ABC=90°,所以AB∥DE.                   5分
(Ⅱ)因为D为的中点,所以∠BAD=∠DAC,
又∠BAD=∠DCB,则∠DAC=∠DCB.
又因为AD⊥DC,DE⊥CE,所以△DAC∽△ECD.
所以,AD·CD=AC·CE,2AD·CD=AC·2CE,
因此2AD·CD=AC·BC.                                      10分

核心考点
试题【如图所示,AC为的直径,D为的中点,E为BC的中点.(Ⅰ)求证:AB∥DE;(Ⅱ)求证:2AD·CD=AC·BC.】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
如图,直三棱柱中,,D是AC的中点.

(Ⅰ)求证:平面
(Ⅱ)求几何体的体积.
题型:不详难度:| 查看答案
已知函数,曲线处的切线过点.
(Ⅰ)求函数的解析式;
(Ⅱ)当时,求的取值范围.
题型:不详难度:| 查看答案
在如图所示的几何体中,平面平面,四边形为平行四边形,.

(Ⅰ)求证:平面
(Ⅱ)求三棱锥的体积.
题型:不详难度:| 查看答案
如图,在四棱锥中,底面为菱形,的中点。

(1)若,求证:平面
(2)点在线段上,,试确定的值,使
题型:不详难度:| 查看答案
如图,在四棱锥中,侧棱底面,底面为矩形,上一点,

(I)若的中点,求证平面
(II)求三棱锥的体积.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.