当前位置:高中试题 > 数学试题 > 函数极值与最值 > 已知函数f(x)=lnx+1x+ax,x∈(0,+∞)(a为实常数).(1)当a=0时,求函数f(x)的最小值;(2)若函数f(x)在[2,+∞)上是单调函数,...
题目
题型:昌平区一模难度:来源:
已知函数f(x)=lnx+
1
x
+ax,x∈(0,+∞)
(a为实常数).
(1)当a=0时,求函数f(x)的最小值;
(2)若函数f(x)在[2,+∞)上是单调函数,求a的取值范围.
答案
(1)a=0时,f′(x)=
x-1
x2
…..(2分)
当0<x<1时f"(x)<0,
当x>1时f"(x)>0,…..(5分)
∴f(x)min=f(1)=1….(7分)
(2)f′(x)=
1
x
-
1
x2
+a=
ax2+x-1
x2

当a≥0时,ax2+x-1在[2,+∞)上恒大于零,即f"(x)>0,符合要求;…(10分)
当a<0时,令g(x)=ax2+x-1,g (x)在[2,+∞)上只能恒小于零
故△=1+4a≤0或





1+4a>0
g(2)≤0
-
1
2a
≤2
,解得:a≤-
1
4

∴a的取值范围是(-∞,-
1
4
]∪[0,+∞)
…(14分)
核心考点
试题【已知函数f(x)=lnx+1x+ax,x∈(0,+∞)(a为实常数).(1)当a=0时,求函数f(x)的最小值;(2)若函数f(x)在[2,+∞)上是单调函数,】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
若函数f(x)=x+


13-2tx
(t∈N*)的最大值是正整数M,则M=______.
题型:镇江一模难度:| 查看答案
已知x>
1
2
,函数f(x)=x2,h(x)=2e lnx(e为自然常数).
(Ⅰ)求证:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,则称函数h(x)的图象为函数f(x),g(x)的“边界”.已知函数g(x)=-4x2+px+q(p,q∈R),试判断“函数f(x),g(x)以函数h(x)的图象为边界”和“函数f(x),g(x)的图象有且仅有一个公共点”这两个条件能否同时成立?若能同时成立,请求出实数p、q的值;若不能同时成立,请说明理由.
题型:郑州二模难度:| 查看答案
函数y=2x3+3x2-12x+14在[-3,4]上的最大值为 ,最小值为 .
题型:不详难度:| 查看答案
已知函数f(x)=


x
,g(x)=alnx,a∈R.
(1)若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;
(2)设函数h(x)=f(x)-g(x),当h(x)存在最小值时,求其最小值φ.
题型:陕西难度:| 查看答案
若函数f(x)=
x
x2+a
(a>0)在[1,+∞)上的最大值为


3
3
,则a的值为______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.