当前位置:高中试题 > 数学试题 > 函数极值与最值 > 某工厂生产某种水杯,每个水杯的原材料费、加工费分别为30元、m元(m为常数,且2≤m≤3),设每个水杯的出厂价为x元(35≤x≤41),根据市场调查,水杯的日销...
题目
题型:不详难度:来源:
某工厂生产某种水杯,每个水杯的原材料费、加工费分别为30元、m元(m为常数,且2≤m≤3),设每个水杯的出厂价为x元(35≤x≤41),根据市场调查,水杯的日销售量与ex(e为自然对数的底数)成反比例,已知每个水杯的出厂价为40元时,日销售量为10个.
(Ⅰ)求该工厂的日利润y(元)与每个水杯的出厂价x(元)的函数关系式;
(Ⅱ)当每个水杯的出厂价为多少元时,该工厂的日利润最大,并求日利润的最大值.
答案
(Ⅰ)设日销量为s,则s=
k
ex

∵x=40,s=10,∴10=
k
e40
,∴k=10e40,∴s=
10e40
ex

∴y=
10e40
ex
(x-30-m)(35≤x≤40);
(Ⅱ)y′=
10e40
ex
(31+m-x),令y′=0,可得x=31+m
∴当2≤m≤3时,33≤31+m≤34,y′<0,∴当35≤x≤41时,函数为减函数.
∴当x=35时,y取最大值,最大值为10(5-t)e5
核心考点
试题【某工厂生产某种水杯,每个水杯的原材料费、加工费分别为30元、m元(m为常数,且2≤m≤3),设每个水杯的出厂价为x元(35≤x≤41),根据市场调查,水杯的日销】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
已知函数f(x)=(x+1)2ex,设k∈[-3,-1],对任意x1,x2∈[k,k+2],则|f(x1)-f(x2)|的最大值为(  )
A.4e-3B.4eC.4e+e-3D.4e+1
题型:不详难度:| 查看答案
对一切的x∈(0,+∞),3x2+2ax-2xlnx+1≥0恒成立,求实数a的取值范围.
题型:不详难度:| 查看答案
函数f(x)=xa-ax(0<a<1)在区间[0,+∞)内的最大值点x0的值为(  )
A.1B.
1
2
C.0D.a
题型:不详难度:| 查看答案
若函数y=x3+
3
2
x2+m
在[-2,1]上的最大值为
9
2
,则m的值为(  )
A.1B.2C.3D.4
题型:不详难度:| 查看答案
已知函数f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=x2-2bx+4,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),则实数b的取值范围是(  )
A.(2,
17
8
]
B.[1,+∞)C.[
17
8
,+∞)
D.[2,+∞)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.