当前位置:高中试题 > 数学试题 > 函数极值与最值 > 设定义在区间[-1,1]上的偶函数f(x)与函数g(x)的图象关于直线x=1对称,且当x∈[2,3]时,g(x)=a3(x-2)-4(x-2)3 (0<a<36...
题目
题型:不详难度:来源:
设定义在区间[-1,1]上的偶函数f(x)与函数g(x)的图象关于直线x=1对称,且当x∈[2,3]时,g(x)=
a
3
(x-2)-4(x-2)3
 (0<a<36),求f(x)的最大值与最小值.
答案
∵f(x)为定义在区间[-1,1]上的偶函数,
∴f(x) 在区间[-1,1]上的最大值与最小值,
实际上分别等于f(x) 在区间[-1,0]上最大值与最小值.
∵f(x)与函数g(x)的图象关于直线x=1对称,
∴f(x) 在区间[-1,0]上最大值与最小值,也就是g(x)在区间[2,3]上的最大值与最小值.(4分)
g′(x)=
a
3
-12(x-2)2

∵0<a<36,
∴g′(x)=0的二根为


a
6
,其中2<2+


a
6
<3
2-


a
6
<2

∴列表如下:
核心考点
试题【设定义在区间[-1,1]上的偶函数f(x)与函数g(x)的图象关于直线x=1对称,且当x∈[2,3]时,g(x)=a3(x-2)-4(x-2)3 (0<a<36】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
x[2,2+


a
6
)
2+


a
6
(2+


a
6
,3]
g′(x)>0=0<0
g(x)
a


a
27
已知函数f(x)=x3-3x,求函数f(x)在[-3,
3
2
]
上的最大值和最小值.
已知函数f(x)=
4x+k•2x+1
4x+2x+1

(1)若对于任意的x∈R,f(x)>0恒成立,求实数k的取值范围;
(2)若f(x)的最小值为-3,求实数k的取值范围;
(3)若对于任意的x1、x2、x3,均存在以f(x1)、f(x2)、f(x3)为三边长的三角形,求实数k的取值范围.
若函数f(x)=
lnx
x
的图象恰与直线y=b有两个公共点,则实数b的取值范围是(  )
A.(0,
1
e
B.(-∞,
1
e
C.(0,e)D.(e,+∞)
函数f(x)=x3-3x+1在闭区间[-3,0]上的最大值为______;最小值为______.
设f(x)=x3-ax2-bx-c,x∈[-1,1],记y=|f(x)|的最大值为M.
(Ⅰ)当a=c=0,b=
3
4
时,求M的值;
(Ⅱ)当a,b,c取遍所有实数时,求M的最小值.
(以下结论可供参考:对于a,b,c,d∈R,有|a+b+c+d|≤|a|+|b|+|c|+|d|,当且仅当a,b,c,d同号时取等号)