当前位置:高中试题 > 数学试题 > 函数极值与最值 > (1)设函数f(x)=xlnx+(1-x)ln(1-x)(0<x<1),求f(x)的最小值;(2)设正数p1,p2,p3,…,p2n满足p1+p2+p3+…+p...
题目
题型:不详难度:来源:
(1)设函数f(x)=xlnx+(1-x)ln(1-x)(0<x<1),求f(x)的最小值;
(2)设正数p1p2p3,…,p2n满足p1+p2+p3+…+p2n=1,求证:p1lnp1+p2lnp2+p3lnp3+…+p2nlnp2n≥-n.
答案
(1)对函数f(x)求导数:f"(x)=(xlnx)"+[(1-x)ln(1-x)]"=lnx-ln(1-x).于是f′(
1
2
)=0

x<
1
2
,f′(x)=lnx-ln(1-x)<0,f(x)
在区间(0,
1
2
)
是减函数,
x>
1
2
,f′(x)=lnx-ln(1-x)>0,f(x)
在区间(
1
2
,1)
是增函数.
所以f(x)在x=
1
2
时取得最小值,f(
1
2
)=-1

(2)用数学归纳法证明.
(i)当n=1时,由(1)知命题成立.
(ii)假定当n=k时命题成立,即若正数p1p2,…,p2k满足p1+p2+…+p2k=1
p1log2p1+p2log2p2+…+p2klog2p2k≥-k
当n=k+1时,若正数p1p2,…,p2k+1满足p1+p2+…+p2k+1=1
x=p1+p2+…+p2kq1=
p1
x
q2=
p2
x
,…,q2k=
p2k
x

q1q2,…,q2k为正数,且q1+q2+…+q2k=1
由归纳假定知q1lnp1+p2lnp2+…+q2klnq2k≥-kp1lnp1+p2lnp2+…+p2klnp2k=x(q1lnq1+q2lnq2+…+q2klnq2k+lnx)≥x(-k)+xlnx,①
同理,由p2k+1+p2k+2+…+p2k+1=1-x可得p2k+1lnp2k+1+…+p2k+1lnp2k+1≥(1-x)(-k)+(1-x)n(1-x).②
综合①、②两式p1lnp1+p2lnp2+…+p2k+1lnp2k+1≥[x+(1-x)](-k)+xlnx+(1-x)ln(1-x)
≥-(k+1).
即当n=k+1时命题也成立.
根据(i)、(ii)可知对一切正整数n命题成立.
核心考点
试题【(1)设函数f(x)=xlnx+(1-x)ln(1-x)(0<x<1),求f(x)的最小值;(2)设正数p1,p2,p3,…,p2n满足p1+p2+p3+…+p】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
已知函数f(x)的导函数f(x)=-3x2+6x+9.
(1)求函数f(x)的单调区间;
(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
题型:武昌区模拟难度:| 查看答案
设函数f(x)=-x3+3mx+1+m(m∈R),且f(x)+f(-x)=4对任意x∈R恒成立.
(I)求m的值;
(II)求函数f(x)在[-1,3]上的最大值;
(III)设实数a,b,c∈[0,+∞)且a+b+c=3,证明:
1
(1+a)2
+
1
(1+b)2
+
1
(1+c)2
3
4
题型:成都一模难度:| 查看答案
已知函数f(x)=
sinx
3cosx

-x(0<x<
π
2
).
(1)求f(x)的导数f′(x);
(2)求证:不等式sin3x>x3cosx在(0,
π
2
]上恒成立;
(3)求g(x)=
1
sin2x
-
1
x2
(0<x≤
π
2
)的最大值.
题型:武汉模拟难度:| 查看答案
已知幂函数f(x)=xa,当x>1时,恒有f(x)<x,则a的取值范围是(  )
A.0<a<1B.a<1C.a>0D.a<0
题型:江门二模难度:| 查看答案
已知a,b为正实数,函数f(x)=ax3+bx+2x在[0,1]上的最大值为4,则f(x)在[-1,0]上的最小值为______.
题型:崇明县二模难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.