当前位置:高中试题 > 数学试题 > 函数极值与最值 > 设函数f(x)=x2ex-1-13x3-x2,g(x)=23x3-x2,试比较f(x)与g(x)的大小....
题目
题型:不详难度:来源:
设函数f(x)=x2ex-1-
1
3
x3-x2,g(x)=
2
3
x3-x2,试比较f(x)与g(x)的大小.
答案
∵f(x)=x2ex-1-
1
3
x3-x2,g(x)=
2
3
x3-x2
∴f(x)-g(x)=x2(ex-1-x),令h(x)=ex-1-x,则h′(x)=ex-1-1.
令h′(x)=0,得x=1,因为x∈(-∞,1]时,h′(x)≤0,
所以h(x)在x∈(-∞,1]上单调递减.
故x∈(-∞,1]时,h(x)≥h(1)=0;
因为x∈[1,+∞)时,h′(x)≥0,所以h(x)在x∈[1,+∞)上单调递增.
故x∈[1,+∞)时,h(x)≥h(1)=0.
所以对任意x∈R,恒有h(x)≥0,
又x2≥0,因此f(x)-g(x)≥0,
故对任意x∈R,恒有f(x)≥g(x).
核心考点
试题【设函数f(x)=x2ex-1-13x3-x2,g(x)=23x3-x2,试比较f(x)与g(x)的大小.】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
设函数f(x)=1-x2+ln(x+1)
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若不等式f(x)>
kx
x+1
-x2(k∈N*)在(0,+∞)上恒成立,求k的最大值.
题型:不详难度:| 查看答案
设函数f(x)=
1
3
x3-
1
2
(2a-1)x2+[a2-a-f′(a)]x+b,(a,b∈
R)
(1)求f′(a)的值;
(2)若对任意的a∈[0,1],函数f(x)在x∈[0,1]上的最小值恒大于1,求b的取值范围.
题型:不详难度:| 查看答案
设函数f(x)=x2+bln(x+1).
(Ⅰ)若对定义域内的任意x,都有f(x)≥f(1)成立,求实数b的值;
(Ⅱ)若函数f(x)的定义域上是单调函数,求实数b的取值范围;
(Ⅲ)若b=-1,证明对任意的正整数n,不等式
n
k=1
f(
1
k
)<1+
1
23
+
1
33
+…+
1
n3
成立.
题型:不详难度:| 查看答案
已知函数f(x)=xex,其中x∈R.
(Ⅰ)求曲线f(x)在点(x0,x0ex0)处的切线方程
(Ⅱ)如果过点(a,b)可作曲线y=f(x)的三条切线
(1)当-2<a<0时,证明:-
1
e2
(a+4)<b<f(a);
(2)当a<-2时,写出b的取值范围(不需要书写推证过程).
题型:不详难度:| 查看答案
已知函数f(x)=
1-x
ax
+lnx

(Ⅰ)若函数f(x)在[1,+∞)上是增函数,求正实数a的取值范围;
(Ⅱ)若a=1,k∈R且k<
1
e
,设F(x)=f(x)+(k-1)lnx,求函数F(x)在[
1
e
,e]
上的最大值和最小值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.