当前位置:高中试题 > 数学试题 > 函数极值与最值 > 已知圆心为P的动圆与直线y=-2相切,且与定圆x2+(y-1)2=1内切,记点P的轨迹为曲线E.(1)求曲线E的方程;(2)设斜率为22的直线与曲线E相切,求此...
题目
题型:不详难度:来源:
已知圆心为P的动圆与直线y=-2相切,且与定圆x2+(y-1)2=1内切,记点P的轨迹为曲线E.
(1)求曲线E的方程;
(2)设斜率为2


2
的直线与曲线E相切,求此时直线到原点的距离.
答案
(1)设圆心P(x,y),∵圆P与直线y=-2相切,∴圆P的半径R=|y+2|.
又∵原P与定圆x2+(y-1)2=1内切,
∴|y+2|-1=}FP|,∴|y+1|=|FP|,
∴点P到定直线y=-1与到定点F(0,1)的距离相等,
∴点P的轨迹是抛物线x2=4y.即曲线E的方程为x2=4y.
(2)设斜率为2


2
的直线与曲线E相切于点M(x0,y0).
由曲线E的方程为x2=4y,∴y=
x
2
,∴切线的斜率为
x0
2

x0
2
=2


2
,即x0=4


2
,∴y0=
(4


2
)2
4
=8,
∴切点为(4


2
,8)

∴切线方程为y-8=2


2
(x-4


2
)
,化为2


2
x-y-8=0

∴原点到此切线的距离d=
|0-0-8|


(2


2
)2+(-1)2
=
8
3
核心考点
试题【已知圆心为P的动圆与直线y=-2相切,且与定圆x2+(y-1)2=1内切,记点P的轨迹为曲线E.(1)求曲线E的方程;(2)设斜率为22的直线与曲线E相切,求此】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
已知函数f(x)=
2
3
x3-
1
2
x2-x+1
,x∈R
(1)求函数f(x)的极大值和极小值;
(2)已知x∈R,求函数f(sinx)的最大值和最小值.
(3)若函数g(x)=f(x)+a的图象与x轴有且只有一个交点,求a的取值范围.
题型:不详难度:| 查看答案
已知函数f(x)=lnx+
a-x
x
,其中a为常数,且a>0.
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线y=
1
2
x+1
垂直,求a的值;
(2)若函数f(x)在区间[1,2]上的最小值为
1
2
,求a的值.
题型:不详难度:| 查看答案
点M(1,m)在函数f(x)=x3的图象上,则该函数在点M处的切线方程为______.
题型:不详难度:| 查看答案
已知函数f(x)=
1+lnx
x

(1)若k>0且函数f(x)在区间(k,k+
3
4
)上存在极值,求实数k的取值范围
(2)如果存在x∈[2,+∞),使得不等式f(x)≤
a
x+2
成立,求实数a的取值范围.
题型:不详难度:| 查看答案
已知f(x)=x3+ax2-a2x+2.
(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1)处的切线方程;
(Ⅱ)若a≠0 求函数f(x)的单调区间;
(Ⅲ)若不等式2xlnx≤f′(x)+a2+1恒成立,求实数a的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.