当前位置:高中试题 > 数学试题 > 函数极值与最值 > 已知:二次函数f(x)=ax2+bx+1,其中a,b∈R,g(x)=ln(ex),且函数F(x)=f(x)-g(x)在x=1处取得极值.(I)求a,b所满足的关...
题目
题型:不详难度:来源:
已知:二次函数f(x)=ax2+bx+1,其中a,b∈R,g(x)=ln(ex),且函数F(x)=f(x)-g(x)在x=1处取得极值.
(I)求a,b所满足的关系;
(II)若直线l:y=kx(k∈R)与函数y=f(x)在x∈[1,2]上的图象恒有公共点,求k的最小值;
(III)试判断是否存在a∈(-2,0)∪(0,2),使得对任意的x∈[1,2],不等式(x+a)F(x)≥0恒成立?如果存在,请求出符合条件的a的所有值;如果不存在,说明理由.
答案
(I) 由已知,∵f(x)=ax2+bx+1,g(x)=ln(ex),
∴函数F(x)=f(x)-g(x)=ax2+bx+1-ln(ex)
∴F′(x)=
2ax2+bx-1
x
(x>0)

∵F(x)=f(x)-g(x)在x=1处取得极值
∴F′(1)=0,∴b=1-2a,
∴F′(x)=
2a(x+
1
2a
)(x-1)
x

∴-
1
2a
≠1,∴a≠-
1
2

(II)由题意得:方程kx=ax2+(1-2a)x+1在x∈[1,2]时总有解,
∴k=
ax2+(1-2a)x+1
x
,即k=ax+
1
x
+1-2a,
∵当a<0时,k=ax+
1
x
+1-2a在x∈[1,2]时单调递减,∴k≥
3
2

当0<a<
1
4
时,由k′=a-
1
x2
<0
,k=ax+
1
x
+1-2a在x∈[1,2]时单调递减,∴k≥
3
2

1
4
≤a≤1时,由ax+
1
x
+1-2a≥2


a
+1-2a(当且仅当x=
1


a
时,取“=”)得k≥2


a
+1-2a,
当a>1时,k=ax+
1
x
+1-2a在x∈[1,2]时单调递增,∴k≥2-a.
∴要使得直线l:y=kx(k∈R)与函数y=f(x)在x∈[1,2]上的图象恒有公共点
实数k应取
3
2
(a<0)、2


a
+1-2a(
1
4
≤a≤1),2-a(a>1)三者中的最大值,
∵2


a
+1-2a=-2(


a
-
1
2
)
2
+
3
2
3
2
1
4
≤a≤1),又2-a<1(a>1),
∴k的最小值为
3
2

(III)∵F(x)=ax2+(1-2a)x+1-lnx,
当a∈(0,2)时,∵x∈[1,2],∴由(x+a)F(x)≥0得F(x)≥0,
∵F′(x)=
2a(x+
1
2a
)(x-1)
x

∴x∈[1,2]时,F′(x)>0,函数y=F(x)单调递增,∴F(x)min≥F(1)=1-a≥0,
∴a∈(0,1]时成立.…(13分)
当a∈[-1,0)且a≠-
1
2
时,∵F(1)=1-a≥0,F(2)=2-ln2≥0,类似地由单调性证得F(x)≥0,
又x+a≥0,∴(x+a)F(x)≥0成立,
当-2<a<-1时,(x+a)F(x)≥0等价于





-a<x≤2
F(x)≥0





1≤x≤-a
F(x)≤0

由上可知,此时不成立.
综上,存在符合条件的a,其所有值的集合为[-1,-
1
2
∪(-
1
2
,0)∪(0,1]
核心考点
试题【已知:二次函数f(x)=ax2+bx+1,其中a,b∈R,g(x)=ln(ex),且函数F(x)=f(x)-g(x)在x=1处取得极值.(I)求a,b所满足的关】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
与直线y=4x-1平行的曲线y=x3+x-2的切线方程是(  )
A.4x-y=0B.4x-y-4=0
C.4x-y-2=0D.4x-y=0或4x-y-4=0
题型:不详难度:| 查看答案
若函数y=
x3
3
-x2+1(0<x<2)图象上任意点处切线的斜率为k,则k的最小值是(  )
A.-1B.0C.1D.
1
2
题型:不详难度:| 查看答案
若函数f(x)=x3-3x+m在[0,2]上存在两个不同的零点,则实数m的取值范围是 .
题型:不详难度:| 查看答案
已知函数f(x)=axlnx,在点(e,f(e))处的切线与直线4x-y=0平行.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)在[m,m+2](m>0)上的最小值.
题型:不详难度:| 查看答案
函数y=lnx在x=
1
e
处的切线与坐标轴所围图形的面积是(  )
A.
1
e
B.
2
e
C.
4
e
D.2e
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.