当前位置:高中试题 > 数学试题 > 函数极值与最值 > 已知函数f(x)=2x3-3x2+3.(1)求曲线y=f(x)在点x=2处的切线方程;(2)若关于x的方程f(x)+m=0有三个不同的实根,求实数m的取值范围....
题目
题型:不详难度:来源:
已知函数f(x)=2x3-3x2+3.
(1)求曲线y=f(x)在点x=2处的切线方程;
(2)若关于x的方程f(x)+m=0有三个不同的实根,求实数m的取值范围.
答案
(1)当x=2时,f(2)=7
故切点坐标为(2,7)
又∵f′(x)=6x2-6x.
∴f′(2)=12
即切线的斜率k=12
故曲线y=f(x)在点(2,f(2))处的切线方程为y-7=12(x-2)
即12x-y-17=0
(2)令f′(x)=6x2-6x=0,解得x=0或x=1
当x<0,或x>1时,f′(x)>0,此时函数为增函数,
当0<x<1时,f′(x)<0,此时函数为减函数,
故当x=0时,函数f(x)取极大值3,
当x=1时,函数f(x)取极小值2,
若关于x的方程f(x)+m=0有三个不同的实根,则2<-m<3,即-3<m<-2
故实数m的取值范围为(-3,-2)
核心考点
试题【已知函数f(x)=2x3-3x2+3.(1)求曲线y=f(x)在点x=2处的切线方程;(2)若关于x的方程f(x)+m=0有三个不同的实根,求实数m的取值范围.】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
曲线y=x3-x在点(1,0)处的切线与直线x+ay=1垂直,则实数a的值为(  )
A.2B.-2C.
1
2
D.-
1
2
题型:不详难度:| 查看答案
若点P是曲线y=x2-lnx上一点,且在点P处的切线与直线y=x-2平行,则点P的横坐标为______.
题型:不详难度:| 查看答案
已知函数f(x)=
1
3
x3-x2-3x在x1、x2处分别取得极大值和极小值,记点M(x1,f(x1))N(x2,f(x2)).
(1)求x1,x2的值;
(2)证明:线段MN与曲线f(x)存在异于M、N的公共点.
题型:不详难度:| 查看答案
已知函数f(x)=1nx-
1
2
ax2
-2x
(1)若函数f(x)在x=2处取得极值,求实数a的值;
(2)若函数f(x)在定义域内单调递增,求a的取值范围;
(3)若a=-
1
2
时,关于x的方程f(x)=-
1
2
x+b在[1,4]上恰有两个不相等的实数根,求实数b的取值范围.
题型:不详难度:| 查看答案
已知曲线y=
1
3
x3+
1
2
x2+4x-7在点Q处的切线的倾斜角α满足sin2α=
16
17
,则此切线的方程为(  )
A.4x-y+7=0或4x-y-6
5
6
=0
B.4x-y-6
5
6
=0
C.4x-y-7=0或4x-y-6
5
6
=0
D.4x-y-7=0
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.