当前位置:高中试题 > 数学试题 > 函数极值与最值 > 已知函数f(x)=x3-2x2-4x-7,其导函数为f′(x).①f(x)的单调减区间是(23,2);②f(x)的极小值是-15;③当a>2时,对任意的x>2且...
题目
题型:不详难度:来源:
已知函数f(x)=x3-2x2-4x-7,其导函数为f′(x).
①f(x)的单调减区间是(
2
3
,2)

②f(x)的极小值是-15;
③当a>2时,对任意的x>2且x≠a,恒有f(x)>f(a)+f′(a)(x-a)
④函数f(x)满足f(
2
3
-x)+f(
2
3
+x)=0

其中假命题的个数为(  )
A.0个B.1个C.2个D.3个
答案
∵f(x)=x3-2x2-4x-7,
∴f′(x)=3x2-4x-4,
令f′(x)=3x2-4x-4=0,得x1=-
2
3
,x2=2.
列表讨论
核心考点
试题【已知函数f(x)=x3-2x2-4x-7,其导函数为f′(x).①f(x)的单调减区间是(23,2);②f(x)的极小值是-15;③当a>2时,对任意的x>2且】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
x(-∞,-
2
3
-
2
3
(-
2
3
,2)
2(2,+∞)
f′(x)-0-0+
f(x)极小值
已知f(x)在x=x0处的导数为4,则
lim
△x→0
f(x0+2△x)-f(x0)
△x
=(  )
A.4B.8C.2D.-4
函数y=2x2-3x上点(1,-1)处的切线方程为(  )
A.x-y+2=0B.x-y-2=0C.x-2y-3=0D.2x-y-3=0
若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值为-
4
3

(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若f(x)=k有3个解,求实数k的取值范围.
已知函数f(x)=2x-2lnx
(Ⅰ)求函数在(1,f(1))的切线方程;
(Ⅱ)求函数f(x)的极值;
(Ⅲ)对于曲线上的不同两点P1(x1,y1),P2(x2,y2),如果存在曲线上的点Q(x0,y0),且x1<x0<x2,使得曲线在点Q处的切线lP1P2,则称l为弦P1P2的陪伴切线.已知两点A(1,f(1)),B(e,f(e)),试求弦AB的陪伴切线l的方程.
如图,函数f(x)的图象是折线段ABC,其A,B,C的坐标分别为(0,4),(2,0),(6,4),则
lim
△x→0
f(1+△x)-f(1)
△x
=______.(用数字作答)