当前位置:高中试题 > 数学试题 > 函数极值与最值 > (12分)设函数(1)若当时,取得极值,求值,并讨论的单调性.(2)若存在极值,求的取值范围,并证明所有极值之和大于...
题目
题型:不详难度:来源:
(12分)设函数
(1)若当时,取得极值,求值,并讨论的单调性.
(2)若存在极值,求的取值范围,并证明所有极值之和大于
答案

解析
(1)

(2)

核心考点
试题【(12分)设函数(1)若当时,取得极值,求值,并讨论的单调性.(2)若存在极值,求的取值范围,并证明所有极值之和大于】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
函数时取得极值,则         
题型:不详难度:| 查看答案
(文)设函数时取得极值.
(Ⅰ)求的值;
(Ⅱ)若上的最大值是9,求上的最小值.
题型:不详难度:| 查看答案
(本题满分12分)
已知函数f (x)=x3+ ax2-bx (a, b∈R) .
(1)若y="f" (x)图象上的点(1,-)处的切线斜率为-4,求y="f" (x)的极大值;
(2)若y="f" (x)在区间[-1,2]上是单调减函数,求a + b的最小值.
题型:不详难度:| 查看答案
(本小题满分13分)
设函数
(I)若当时,取得极值,求的值,并讨论的单调性;
(II)若存在极值,求的取值范围,并证明所有极值之和大于
题型:不详难度:| 查看答案
(本小题满分12分)已知函数,
(1)当时,求函数的单调递增区间;
(2)若函数在[2,0]上不单调,且时,不等式恒成立,求实数a的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.