当前位置:高中试题 > 数学试题 > 函数极值与最值 > 已知上有最大值为3,则f(x)在[-2,2]上的最小值为A.-5B.-11C.-29D.-37...
题目
题型:不详难度:来源:
已知上有最大值为3,则f(x)在[-2,2]上的最小值为
A.-5B.-11C.-29D.-37

答案
D
解析
先求一阶导数
f′(x)=6-12x
然后通过一阶导数看原函数增减性
f"(x)=6-12x>0为增函数,即x<0或x>2时,原函数递增;0<x<2时,原函数递减。
接下来通过二阶导数求拐点
f′′(x)=12x-12
令f′′(x′)=12x′-12=0,得x′=1,即为拐点。
当x>1时,f′′(x)>0,曲线是凹的;当x<1时,f′′(x)<0,曲线是凸的。
现在可画出大致图形。
所以最大值为x=0,代入原函数为x=0时取最大值3,即m=3.
最小值可能为x=2,或x=-2,代入原函数比较得x=-2,为最小值,且最小值为-37。
核心考点
试题【已知上有最大值为3,则f(x)在[-2,2]上的最小值为A.-5B.-11C.-29D.-37】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
己知函数,其导数f’(x)的图象如图所示,则函数的极小值是 (  )
A.a+b+cB.8a+4b+cC.3a+2bD.c

题型:不详难度:| 查看答案
函数,的最大值为(     )
A.B.C.D.

题型:不详难度:| 查看答案
设函数.
(I)求函数的最小值;
(Ⅱ)若,且,求证:
(Ⅲ)若,且
求证:.
题型:不详难度:| 查看答案
函数处取到极值,则的值为(   )
A.B.C.D.

题型:不详难度:| 查看答案
(6分)已知函数,当时,的极大值为7;当时,有极小值.求(1)的值; (2)函数的极小值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.