当前位置:高中试题 > 数学试题 > 函数极值与最值 > 若的展开式中与的系数之比为,其中(1)当时,求的展开式中二项式系数最大的项;(2)令,求的最小值. ...
题目
题型:不详难度:来源:
的展开式中的系数之比为,其中
(1)当时,求的展开式中二项式系数最大的项;
(2)令,求的最小值.
答案
(1)(2)6
解析
本试题主要是考查了二项式定理和的运用,以及函数的最值综合运用。
(1)因为展开式中含的项为:;展开式中含的项为:
得:得到当时,的展开式中二项式系数最大的项为
(2)由
时,,当时,,从而得到单调性,求解最值。
解:(1)展开式中含的项为:;展开式中含的项为:
得:
时,的展开式中二项式系数最大的项为
(2)由
时,,当时,
所以 递减,在递增,
的最小值为, 此时
核心考点
试题【若的展开式中与的系数之比为,其中(1)当时,求的展开式中二项式系数最大的项;(2)令,求的最小值. 】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
已知有两个极值点,且在区间(0,1)上有极大值,无极小值,则的取值范围是(   ) 
A.B.C.D.

题型:不详难度:| 查看答案
函数在区间的最大值为(    )
A.B.-1C.D.0

题型:不详难度:| 查看答案
已知,函数上是单调增函数,则的最大值是
(   )
A.0B.1C.2 D.3

题型:不详难度:| 查看答案
对于函数,在使成立的所有常数中,我们把的最大值叫做的下确界,则对于,且不全为的下确界是(   )
A.B.2C.D.4

题型:不详难度:| 查看答案
,则函数的值域为    __________    .
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.