当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 设函数f(x)=x(ex-1)-ax2, (Ⅰ)若a=,求f(x)的单调区间; (Ⅱ)若当x≥0时f(x)≥0,求a的取值范围。 ...
题目
题型:高考真题难度:来源:
设函数f(x)=x(ex-1)-ax2
(Ⅰ)若a=,求f(x)的单调区间;
(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围。
答案
解:(Ⅰ)a=时,
f′(x)=ex-1+xex-x=(ex-1)(x+1),
当x∈(-∞,-1)时,f′(x)>0;当x∈(-1,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0,
故f(x)在(-∞,-1),(0,+∞)上单调增加,在(-1,0)上单调减少.
(Ⅱ)f(x)=x(ex-1-ax),令g(x)=ex-1-ax,
则g′(x)=ex-a,
若a≤1,则当x∈(0,+∞)时,g′(x)>0,g(x)为增函数,
而g(0)=0,从而当x≥0时,g(x)≥0,即f(x)≥0;
若a>1,则当x∈(0,lna)时,g′(x)<0,g(x)为减函数,
而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.
综合得a的取值范围为(-∞,1].
核心考点
试题【设函数f(x)=x(ex-1)-ax2, (Ⅰ)若a=,求f(x)的单调区间; (Ⅱ)若当x≥0时f(x)≥0,求a的取值范围。 】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
已知函数f(x)=ax3+x2+bx(其中常数a,b∈R),g(x)=f(x)+f′(x)是奇函数,
(Ⅰ)求f(x)的表达式;
(Ⅱ)讨论g(x)的单调性,并求g(x)在区间[1,2]上的最大值与最小值.
题型:重庆市高考真题难度:| 查看答案
已知函数f(x)=+x+(a-1)lnx+15a,其中a<0,且a≠-1.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)设函数(e是自然对数的底数)。是否存在a,使g(x)在[a,-a]上为减函数?若存在,求a的取值范围;若不存在,请说明理由.
题型:湖南省高考真题难度:| 查看答案
设函数f(x)=sinx-cosx+x+1,0<x<2π,求函数f(x)的单调区间与极值。
题型:安徽省高考真题难度:| 查看答案
已知函数f(x)=x4-3x2+6,
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设点P在曲线y=f(x)上,若该曲线在点P处的切线l通过坐标原点,求l的方程.
题型:高考真题难度:| 查看答案
设f(x)是定义在区间(1,+∞)上的函数,其导函数为f(x)。如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a)。
(I)设函数,其中b为实数。
(i)求证:函数f(x)具有性质P(b);
(ii)求函数f(x)的单调区间;
(Ⅱ)已知函数g(x)具有性质P(2)。给定x1,x2∈(1,+∞),x1<x2,设m为实数,α=mx1+(1-m)x2,β=(1-m)x1+mx2,且α>1,β>1,若|g(α)-g(β)|< |g(x1)-g(x2)|,求m的取值范围。
题型:江苏高考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.