当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知a为实数,x=1是函数f(x)=x2-6x+alnx的一个极值点。(Ⅰ)若函数f(x)在区间(2m-1,m+1)上单调递减,求实数m的取值范围;(Ⅱ)设函数...
题目
题型:陕西省模拟题难度:来源:
已知a为实数,x=1是函数f(x)=x2-6x+alnx的一个极值点。
(Ⅰ)若函数f(x)在区间(2m-1,m+1)上单调递减,求实数m的取值范围;
(Ⅱ)设函数,对于任意x≠0和x1,x2∈[1,5],有不等式|λg(x)|-5ln5≥| f(x1)-f(x2)|恒成立,求实数λ的取值范围。
答案
解:, 
 (Ⅰ)
首先x>0,         

令f′(x)<0,得1<x<5,
即f(x)的单调递减区间是(1,5),
∵f(x)在区间(2m-1,m+1)上单调递减,
∴(2m-1,m+1)
(Ⅱ)由(Ⅰ),
列表如下:

, 
,              
恒成立恒成立,
,当且仅当x=±1时取等号,
核心考点
试题【已知a为实数,x=1是函数f(x)=x2-6x+alnx的一个极值点。(Ⅰ)若函数f(x)在区间(2m-1,m+1)上单调递减,求实数m的取值范围;(Ⅱ)设函数】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
(1)证明不等式:
(2)已知函数f(x)=ln(1+x)-在(0,+∞)上单调递增,求实数a的取值范围;
(3)若关于x的不等式在[0,+∞)上恒成立,求实数b的最大值。
题型:湖北省模拟题难度:| 查看答案
已知函数f(x)=mx2-2x+1+ln(x+1)(m≥1),
(1)求y=f(x)在点P(0,1)处的切线方程;
(2)设g(x)=f(x)+x-1仅有一个零点,求实数m的值;
(3)试探究函数f(x)是否存在单调递减区间?若有,设其单调区间为[t,s] ,试求s-t的取值范围?若没有,请说明理由。
题型:湖北省模拟题难度:| 查看答案
已知常数a>0,n为正整数,fn(x)=xn-(x+a)n(x>0)是关于x的函数,
(1)判定函数fn(x)的单调性,并证明你的结论;
(2)对任意n≥a,证明fn+1′(n+1)<(n+1)fn′(n)。
题型:模拟题难度:| 查看答案
设函数在[1,+∞)上是增函数,
(1)求正实数a的取值范围;
(2)设b>0,a>1,求证:
题型:模拟题难度:| 查看答案
已知f(x)=(x∈R)在区间[-1,1]上是增函数,
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2,试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由。
题型:模拟题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.