当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导函数,则的解集为[     ]A.{x|﹣1<x<1}B.{x|x<﹣1}C.{x|x<﹣1或x>1}...
题目
题型:吉林省期末题难度:来源:
已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导函数,则的解集为[     ]
A.{x|﹣1<x<1}
B.{x|x<﹣1}
C.{x|x<﹣1或x>1}
D.{x|x>1}
答案
D
核心考点
试题【已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导函数,则的解集为[     ]A.{x|﹣1<x<1}B.{x|x<﹣1}C.{x|x<﹣1或x>1}】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
已知三次函数f(x)的最高次项系数为a,三个零点分别为﹣1,0,3.
(1)若方程有两个相等的实根,求a的值;
(2)若函数λ(x)=f(x)+2在区间内单调递减,求a的取值范围.
题型:江苏期末题难度:| 查看答案
在直角坐标系中,设矩形OPQR的顶点按逆时针顺序依次为O(0,0)、P(1,t)、Q(1﹣2t,2+t)、R(﹣2t,2),其中t∈(0,+∞).
(1)求矩形OPQR在第一象限部分的面积S(t);
(2)确定函数S(t)的单调区间,并加以证明.
题型:江苏月考题难度:| 查看答案
已知二次函数g(x)对任意实数x都满足g(x﹣1)+g(1﹣x)=x2﹣2x﹣1,且g(1)=﹣1.令
(1)求g(x)的表达式;
(2)若x>0使f(x)≤0成立,求实数m的取值范围;
(3)设1<m≤e,H(x)=f(x)﹣(m+1)x,证明:对x1,x2∈[1,m],恒有|H(x1)﹣H(x2)|<1.
题型:江苏期末题难度:| 查看答案
若函数f(x)的导函数为f′(x)=x2﹣4x+3,则函数f(x﹣1)的单调递减区间为(    )
题型:江苏期末题难度:| 查看答案
已知:三次函数f(x)=x3+ax2+bx+c,在(﹣∞,﹣1),(2,+∞)上单调增,在
(﹣1,2)上单调减,当且仅当x>4时,f(x)>x2﹣4x+5.
(1)求函数f (x)的解析式;
(2)若函数,求h(x)的单调区间
题型:江苏期末题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.