当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数y=f(x)是定义在R上的奇函数,且当x∈(﹣∞,0)时不等式f(x)+xf "(x)<0成立,若a=30.3f(30.3),b=(logπ3)f(lo...
题目
题型:山东省期末题难度:来源:
已知函数y=f(x)是定义在R上的奇函数,且当x∈(﹣∞,0)时不等式f(x)+xf "(x)<0成立,若a=30.3f(30.3),b=(logπ3)f(logπ3),c=()f().则a,b,c的大小关系是[     ]
A.a>b>c
B.c>a>b
C.c>b>a
D.a>c>b
答案
B
核心考点
试题【已知函数y=f(x)是定义在R上的奇函数,且当x∈(﹣∞,0)时不等式f(x)+xf "(x)<0成立,若a=30.3f(30.3),b=(logπ3)f(lo】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
已知f(x)=x3+bx+cx+d在(﹣∞,0)上是增函数,在[0,2]上是减函数,且方程f(x)=0有三个根,它们分别为α,2,β.
(1)求c的值;
(2)求证f(1)≥2;
(3)求|α﹣β|的取值范围.
题型:山东省月考题难度:| 查看答案
定义在R上的函数f(x)=ax3+bx2+cx+3同时满足以下条件:
①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数;
 ②f′(x)是偶函数;
③f(x)在x=0处的切线与直线y=x+2垂直.
(1)求函数y=f(x)的解析式;
(2)设g(x)=4lnx﹣m,若存在x∈[1,e],使g(x)<f′(x),求实数m的取值范围.
题型:山东省期末题难度:| 查看答案
已知函数f(x)=x3+ax2﹣bx+1(a、b∈R)在区间[﹣1,3]上是减函数,则a+b的最小值是   [     ]
A.
B.
C.2
D.3
题型:山东省月考题难度:| 查看答案
已知函数f(x)=lnx,g(x)=x2﹣2x.
(1)设h(x)=f(x+1)﹣g"(x)(其中g"(x)是g(x)的导函数),求h(x)的最大值;
(2)证明:当0<b<a时,求证:f(a+b)﹣f(2b)<
(3)设k∈Z,当x>1时,不等式k(x﹣1)<xf(x)+3g"(x)+4恒成立,求k的最大值.
题型:山东省月考题难度:| 查看答案
若f(x)=﹣x2+2ax与g(x)= 在区间[1,2]上都是减函数,则a的取值范围是   [     ]
A.(0,1)
B.(0,1]
C.(﹣1,0)∪(0,1)
D.(﹣1,0)∪(0,1 ]
题型:山东省月考题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.