当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知定义在R上的可导函数y=f(x)的导函数为f′(x),满足f′(x)<f(x)且y=f(x+1)为偶函数,f(2)=1,则不等式f(x)<ex的解集为___...
题目
题型:不详难度:来源:
已知定义在R上的可导函数y=f(x)的导函数为f′(x),满足f′(x)<f(x)且y=f(x+1)为偶函数,f(2)=1,则不等式f(x)<ex的解集为______.
答案
∵y=f(x+1)为偶函数
∴y=f(x+1)的图象关于x=0对称
∴y=f(x)的图象关于x=1对称
∴f(2)=f(0)
又∵f(2)=1
∴f(0)=1
g(x)=
f(x)
ex
(x∈R),则g(x)= 
f(x)ex-f(x)ex 
(ex)2
=
f(x)-f(x)
ex

又∵f′(x)<f(x)
∴f(x)-f(x)<0
∴g(x)<0
∴y=g(x)单调递减
∵f(x)<ex
f(x)
ex
<1

即g(x)<1
又∵g(0)=
f(0)
e0
=1

∴g(x)<g(0)
∴x>0
故答案为:(0,+∞)
核心考点
试题【已知定义在R上的可导函数y=f(x)的导函数为f′(x),满足f′(x)<f(x)且y=f(x+1)为偶函数,f(2)=1,则不等式f(x)<ex的解集为___】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
已知f(x)=ax3-bx2+cx在区间[0,1]上是减函数,在区间(-∞,0],[1,+∞)上是增函数,又f′(2)=12.
(1)求f(x)的解析式;
(2)若在区间[0,m].(m>0)上恒有f(x)≤5x成立,求m的取值范围.
题型:不详难度:| 查看答案
已知函数f(x)满足f(x)=x3+f ′(
2
3
)x2-x+C
(其中f ′(
2
3
)
为f(x)在点x=
2
3
处的导数,C为常数).
(1)求函数f(x)的单调区间;
(2)若方程f(x)=0有且只有两个不等的实数根,求常数C;
(3)在(2)的条件下,若f(-
1
3
)>0
,求函数f(x)的图象与x轴围成的封闭图形的面积.
题型:不详难度:| 查看答案
已知函数f(x)=
lnx
x

(1)求函数f(x)的单调区间;
(2)设a>0,求函数f(x)在[2a,4a]上的最小值.
题型:不详难度:| 查看答案
对任意的实数a,b,记max{a,b}=





a(a≥b)
b(a<b)
若F(x)=max{f(x),g(x)}(x∈R),其中奇函数y=f(x)在x=1时有极小值-2,y=g(x)是正比例函数,函数y=f(x)(x≥0)与函数y=g(x)的图象如图所示  则下列关于函数y=F(x)的说法中,正确的是(  )
A.y=F(x)为奇函数
B.y=F(x)有极大值F(1)且有极小值F(-1)
C.y=F(x)的最小值为-2且最大值为2
D.y=F(x)在(-3,0)上不是单调函数
魔方格
题型:不详难度:| 查看答案
设函数f(x)=6x3+3(a+2)x2+2ax.
(1)若f(x)的两个极值点为x1,x2,且x1x2=1,求实数a的值;
(2)是否存在实数a,使得f(x)是(-∞,+∞)上的单调函数?若存在,求出a的值;若不存在,说明理由.
题型:江西难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.