当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数f(x)=lnxx.(I)判断函数f(x)的单调性;(Ⅱ)若y=xf(x)+1x的图象总在直线y=a的上方,求实数a的取值范围;(Ⅲ)若函数f(x)与g...
题目
题型:宣武区二模难度:来源:
已知函数f(x)=
lnx
x

(I)判断函数f(x)的单调性;
(Ⅱ)若y=xf(x)+
1
x
的图象总在直线y=a的上方,求实数a的取值范围;
(Ⅲ)若函数f(x)与g(x)=
1
6
x-
m
x
+
2
3
的图象有公共点,且在公共点处的切线相同,求实数m的值.
答案
(Ⅰ)可得f(x)=
1-lnx
x2

当0<x<e时,f′(x)>0,f(x)为增函数;当e<x时,f′(x)<0,f(x)为减函数.
(Ⅱ)依题意,转化为不等式a<lnx+
1
x
对于x>0恒成立
令g(x)=lnx+
1
x
,则g"(x)=
1
x
-
1
x2
=
1
x
(1-
1
x
)

当x>1时,因为g"(x)=
1
x
(1-
1
x
)
>0,g(x)是(1,+∞)上的增函数,
当x∈(0,1)时,g′(x)<0,g(x)是(0,1)上的减函数,
所以g(x)的最小值是g(1)=1,
从而a的取值范围是(-∞,1).
(Ⅲ)转化为lnx=
1
6
x2+
2
3
x-m
,y=lnx与y=
1
6
x2+
2
3
x-m
在公共点(x0,y0)处的切线相同
由题意知





lnx0=
1
6
x20
+
2
3
x0-m
1
x0
=
1
3
x0+
2
3

∴解得:x0=1,或x0=-3(舍去),代入第一式,即有m=
5
6
核心考点
试题【已知函数f(x)=lnxx.(I)判断函数f(x)的单调性;(Ⅱ)若y=xf(x)+1x的图象总在直线y=a的上方,求实数a的取值范围;(Ⅲ)若函数f(x)与g】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
设t≠0,点P(t,0)是函数f(x)=x3+ax与g(x)=bx2+c的图象的一个公共点,两函数的图象在点P处有相同的切线.
(Ⅰ)用t表示a,b,c;
(Ⅱ)若函数y=f(x)-g(x)在(-1,3)上单调递减,求t的取值范围.
题型:湖南难度:| 查看答案
若函数f(x)=lnx,g(x)=x-
2
x

(1)求函数φ(x)=g(x)-kf(x)(k>0)的单调区间;
(2)若对所有的x∈[e,+∞],都有xf(x)≥ax-a成立,求实数a的取值范围.
题型:不详难度:| 查看答案
函数f(x)=x-
1
3
(2x-1)
3
2
的单调递减区间为 ______
题型:不详难度:| 查看答案
设函数f(x)=
a
3
x3+bx2+4cx+d
的图象关于原点对称,且f(x)的图象在点p(1,m)处的切线的斜率为-6,且当x=2时,f(x)有极值.
(1)求a,b,c,d的值;
(2)若x1,x2∈[-1,1]时,求证|f(x1)-f(x2)|≤
44
3
题型:不详难度:| 查看答案
已知函数f(x)=aln(x+2)+
1
2
x2-2x
,讨论函数f(x)的单调性.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.