当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知.(1)若存在单调递减区间,求实数的取值范围;(2)若,求证:当时,恒成立;(3)利用(2)的结论证明:若,则....
题目
题型:不详难度:来源:
已知
(1)若存在单调递减区间,求实数的取值范围;
(2)若,求证:当时,恒成立;
(3)利用(2)的结论证明:若,则.
答案
(1);(2)证明过程详见试题解析;(3)证明过程详见试题解析.
解析

试题分析:(1)当时,. ∵ 有单调减区间,∴有解.分两种情况讨论有解.可得到的取值范围是;(2)此问就是要证明函数上的最大值小于或等于,经过求导讨论单调性得出当时,有最大值,命题得证;(3)利用(2)的结论,将此问的不等关系,转化成与(2)对应的函数关系进行证明.
试题解析:(1)当时,

有单调减区间,∴有解,即
,∴ 有解.
(ⅰ)当时符合题意;
(ⅱ)当时,△,即
的取值范围是.
(2)证明:当时,设
.

讨论的正负得下表:
 
∴当有最大值0.
恒成立.
∴当时,恒成立.
(3)证明:∵

 

 
由(2)有
.
核心考点
试题【已知.(1)若存在单调递减区间,求实数的取值范围;(2)若,求证:当时,恒成立;(3)利用(2)的结论证明:若,则.】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
已知函数,曲线在点处的切线方程为.
(1)求的值;
(2)求上的最大值.
题型:不详难度:| 查看答案
函数f(x)=x3ax2+(a-1)x+1在区间(1,5)上为减函数,在区间(6,+∞)上为增函数,则实数a的取值范围是(  )
A.[4,5]B.[3,5]C.[5,6]D.[6,7]

题型:不详难度:| 查看答案
函数f(x)=3x2+ln x-2x的极值点的个数是(  )
A.0          B.1
C.2 D.无数个

题型:不详难度:| 查看答案
已知e为自然对数的底数,则函数y=xex的单调递增区间是(  )
A.[-1,+∞) B.(-∞,-1]
C.[1,+∞) D.(-∞,1]

题型:不详难度:| 查看答案
已知函数f(x)=x2-ax+3在(0,1)上为减函数,函数g(x)=x2-aln x在(1,2)上为增函数,则a的值等于(  )
A.1 B.2
C.0D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.