当前位置:高中试题 > 数学试题 > 常见函数的导数 > 已知函数f(x)=(x+1)lnx-x+1(I)求曲线在(1,f(1))处的切线方程;(Ⅱ)若xf′(x)≤x2+ax+1,求a的取值范围;(Ⅲ)证明:(x-1...
题目
题型:不详难度:来源:
已知函数f(x)=(x+1)lnx-x+1
(I)求曲线在(1,f(1))处的切线方程;
(Ⅱ)若xf′(x)≤x2+ax+1,求a的取值范围;
(Ⅲ)证明:(x-1)f(x)≥0.
答案
(I)f′(x)=
x+1
x
+lnx-1=
1
x
+lnx

所以f′(1)=1,所以切线方程y=x-1
(Ⅱ)xf′(x)≤x2+ax+1⇔1+xlnx≤x2+ax+1,
即:xlnx≤x2+ax,x>0,则有lnx≤x+a,
即要使a≥lnx-x成立.
令g(x)=lnx-x,那么g′(X)=
1
x
-1=0
⇒x=1,
可知当0<x<1时单调增,当x>1时单调减.
故g(x)=lnx-x 在x=1 处取最大值为gmax=-1,
那么要使得a≥lnx-x 成立,则有a≥-1.
(Ⅲ)由(Ⅱ)可得:lnx-x≤-1,即lnx-x+1≤0
当0<x<1 时,f(x)=xlnx+lnx-x+1<0,
当x≥1时,f(x)=xlnx+lnx-x+1
=lnx+(xlnx-x+1)
=lnx+x(lnx+
1
x
-1)
=lnx-x(ln
1
x
-
1
x
+1)
≥0.
∴f(x)=xlnx+lnx-x+1=lnx+(xlnx-x+1)≥0
综上所述,(x-1)f(x)≥0
核心考点
试题【已知函数f(x)=(x+1)lnx-x+1(I)求曲线在(1,f(1))处的切线方程;(Ⅱ)若xf′(x)≤x2+ax+1,求a的取值范围;(Ⅲ)证明:(x-1】;主要考察你对常见函数的导数等知识点的理解。[详细]
举一反三
设f(x)=sinx+cosx,那么(  )
A.f(x)=cosx-sinxB.f(x)=cosx+sinx
C.f(x)=-cosx+sinxD.f(x)=-cosx-sinx
题型:不详难度:| 查看答案
已知函数f(x)=(x+2)ex,则f′(0)=______.
题型:不详难度:| 查看答案
已知点P是曲线y=x3+2x+1上的一点,过点P与此曲线的相切的直线l平行于直线y=2x-3,则切线l的方程是(  )
A.y=-
1
2
x+1
B.y=2x+1
C.y=2xD.y=2x+1或y=2x
题型:不详难度:| 查看答案
已知函数f(x)=lnx-
1
2
ax2+bx(a>0)且f′(1)=0.
(Ⅰ)试用含a式子表示b;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)若a=2,试求f(x)在区间[c,c+
1
2
](c>0)上的最大值.
题型:不详难度:| 查看答案
设f0(x)=cosx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn"(x),n∈N*,则f2011(x)=______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.