当前位置:高中试题 > 数学试题 > 常见函数的导数 > (本小题满分16分)已知函数.(Ⅰ)当时,求证:函数在上单调递增;(Ⅱ)若函数有三个零点,求的值;(Ⅲ)若存在,使得,试求的取值范围....
题目
题型:不详难度:来源:
(本小题满分16分)已知函数.(Ⅰ)当时,求证:函数上单调递增;(Ⅱ)若函数有三个零点,求的值;
(Ⅲ)若存在,使得,试求的取值范围.
答案
(Ⅰ)见解析    (Ⅱ)   (Ⅲ)
解析
(Ⅰ)…3分
由于,故当时,,所以
故函数上单调递增……5分
(Ⅱ)当时,因为,且在R上单调递增,故有唯一解 所以的变化情况如下表所示:
x

0



0


递减
极小值
递增

  又函数有三个零点,所以方程有三个根,
,所以,解得…11分
(Ⅲ)因为存在,使得
所以当时,…………12分
由(Ⅱ)知,上递减,在上递增,
所以当时,

,因为(当时取等号),
所以上单调递增,而
所以当时,;当时,
也就是当时,;当时,………………………14分
①当时,由
②当时,由
综上知,所求的取值范围为………16分
核心考点
试题【(本小题满分16分)已知函数.(Ⅰ)当时,求证:函数在上单调递增;(Ⅱ)若函数有三个零点,求的值;(Ⅲ)若存在,使得,试求的取值范围.】;主要考察你对常见函数的导数等知识点的理解。[详细]
举一反三
(本题满分14分)设函数(1)当时,求的最大值;(2)令,(0≤3),其图象上任意一点处切线的斜率恒成立,求实数的取值范围;(3)当,方程有唯一实数解,求正数的值。
题型:不详难度:| 查看答案
M是由满足下列两个条件的函数构成的集合:
①议程有实根;②函数的导数满足0<<1.
(I)若,判断方程的根的个数;
(II)判断(I)中的函数是否为集合M的元素;
(III)对于M中的任意函数,设x1是方程的实根,求证:对于定义域中任意的x2x3,当| x2x1|<1,且| x3x1|<1时,有
题型:不详难度:| 查看答案


(1)当a=-1时,求函数图像上的点到直线距离的最小值;
(2)是否存在正实数a,使对一切正实数x都成立?若存在,求出a的取值范围;若不存在,请说明理由
题型:不详难度:| 查看答案
(本题满分15分)设M是由满足下列条件的函数构成的集合:“①方程有实数根;②函数的导数满足
(I)证明:函数是集合M中的元素;
(II)证明:函数具有下面的性质:对于任意,都存在,使得等式成立。 
(III)若集合M中的元素具有下面的性质:若的定义域为D,则对于任意[m,n],都存在,使得等式成立。试用这一性质证明:对集合M中的任一元素,方程只有一个实数根。
题型:不详难度:| 查看答案
(本小题满分15分)已知函数 .
(Ⅰ)试用含式子表示;(Ⅱ)求的单调区间;(Ⅲ)若,试求在区间上的最大值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.