当前位置:高中试题 > 数学试题 > 常见函数的导数 > 在实数集R上定义运算:(Ⅰ)求的解析式;(Ⅱ)若在R上是减函数,求实数a的取值范围;(Ⅲ)若,在的曲线上是否存在两点,使得过这两点的切线互相垂直?若存在,求出切...
题目
题型:不详难度:来源:
在实数集R上定义运算:
(Ⅰ)求的解析式;
(Ⅱ)若在R上是减函数,求实数a的取值范围;
(Ⅲ)若,在的曲线上是否存在两点,使得过这两点的切线互相垂直?若存在,求出切线方程;若不存在,说明理由.
答案
(I)(II).
(III)的曲线上不存的两点,使得过这两点的切线点互相垂直.
解析

试题分析:(I)由新定义计算即得,关键是理解“新运算”的意义;
(II)根据时,在减函数,得到对于恒成立,
恒成立,得到.
属于常规题目,难度不大,主要是注意应用“转化与化归思想” .
(III)假定曲线上的任意两点,如果存在互相垂直的切线,则有
.因此,只需研究是否成立即可.
试题解析:(I)由题意,              2分
            4分
(II)∵,      6分
时,在减函数,
对于恒成立,即
恒成立,             8分

恒成立,

.                    9分
(III)当时,
曲线上的任意两点,
,              11分

不成立.            12分
的曲线上不存的两点,使得过这两点的切线点互相垂直.    13分
核心考点
试题【在实数集R上定义运算:(Ⅰ)求的解析式;(Ⅱ)若在R上是减函数,求实数a的取值范围;(Ⅲ)若,在的曲线上是否存在两点,使得过这两点的切线互相垂直?若存在,求出切】;主要考察你对常见函数的导数等知识点的理解。[详细]
举一反三
已知,现给出如下结论:
;②;③;④.
其中正确结论的序号为(   )
A.①③B.①④C.②④D.②③

题型:不详难度:| 查看答案
某连锁分店销售某种商品,每件商品的成本为元,并且每件商品需向总店交元的管理费,预计当每件商品的售价为元时,一年的销售量为万件.
(1)求该连锁分店一年的利润(万元)与每件商品的售价的函数关系式;
(2)当每件商品的售价为多少元时,该连锁分店一年的利润最大,并求出的最大值.
题型:不详难度:| 查看答案
已知函数上是增函数,上是减函数.
(1)求函数的解析式;
(2)若时,恒成立,求实数m的取值范围;
(3)是否存在实数b,使得方程在区间上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由.
题型:不详难度:| 查看答案
已知函数,函数
(I)试求f(x)的单调区间。
(II)若f(x)在区间上是单调递增函数,试求实数a的取值范围:
(III)设数列是公差为1.首项为l的等差数列,数列的前n项和为,求证:当时,.
题型:不详难度:| 查看答案
某市在市内主干道北京路一侧修建圆形休闲广场.如图,圆形广场的圆心为O,半径为100m,并与北京路一边所在直线相切于点M.A为上半圆弧上一点,过点A作的垂线,垂足为B.市园林局计划在△ABM内进行绿化.设△ABM的面积为S(单位:),(单位:弧度).

(I)将S表示为的函数;
(II)当绿化面积S最大时,试确定点A的位置,并求最大面积.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.