当前位置:高中试题 > 数学试题 > 常见函数的导数 > 已知函数,设(Ⅰ)求函数的单调区间(Ⅱ)若以函数图象上任意一点为切点的切线的斜率恒成立,求实数的最小值(Ⅲ)是否存在实数,使得函数的图象与函数的图象恰有四个不同...
题目
题型:不详难度:来源:
已知函数,设
(Ⅰ)求函数的单调区间
(Ⅱ)若以函数图象上任意一点为切点的切线的斜率恒成立,求实数的最小值
(Ⅲ)是否存在实数,使得函数的图象与函数的图象恰有四个不同交点?若存在,求出实数的取值范围;若不存在,说明理由。
答案
(Ⅰ) 的单调递减区间为,单调递增区间为;(Ⅱ)实数的最小值;(Ⅲ)当时,的图像与的图像恰有四个不同交点.
解析

试题分析:(I)求函数的单调区间,首先求出的解析式,得,求函数的单调区间,可用定义,也可用导数法,由于本题含有对数函数,可通过求导来求,对求导得,分别求出的范围,从而求出的单调区间;(II)若以函数图象上任意一点为切点的切线的斜率恒成立,求实数的最小值,可利用导数的几何意义表示出切线的斜率,根据恒成立,将分离出来得,即大于等于的最大值即可,这样求出的范围,从而得到的最小值;(III)函数的图象与的图象有四个不同的交点,即方程有四个不同的根,分离出后,转化成新函数的极大值和极小值问题,利用图像即可求出实数的取值范围.
试题解析:(Ⅰ)F(x)=f(x)+g(x)=lnx+(x>0), == 
∵a>0,由FF"(x)>0Þx∈(a,+∞),∴F(x)在(a,+∞)上是增函数.
由FF"(x)<0Þx∈(0,a),∴F(x)在(0,a)上是减函数.
∴F(x)的单调递减区间为(0,a),单调递增区间为(a,+∞).
(Ⅱ)由FF"(x)= (0<x≤3)得
k= FF"(x0)= (0<x0≤3)恒成立Ûa≥-x02+x0恒成立.
∵当x0=1时,-x02+x0取得最大值
∴a≥,a的最小值为.
(Ⅲ)若y=g()+m-1=x2+m-的图像与y=f(1+x2)=ln(x2+1)的图像恰有四个不同交点,即x2+m-=ln(x2+1)有四个不同的根,亦即m=ln(x2+1)-x2+有四个不同的根.令= ln(x2+1)-x2+.
则GF"(x)=-x==
当x变化时GF"(x)、G(x)的变化情况如下表:
 
(-¥,-1)
 (-1,0)
  (0,1)
 (1,+¥)
GF"(x)的符号
     +
     -
     +
     -
G(x)的单调性
   ↗
    ↘
    ↗
    ↘
由上表知:G(x)极小值=G(0)=, G(x)极大值=G(-1)=G(1)=ln2>0
画出草图和验证G(2)=G(-2)=ln5-2+<可知,当m∈(,ln2)时,y=G(x)与y=m恰有四个不同交点.
∴当m∈(,ln2)时,y=g()+m-1=x2+m-的图像与y=f(1+x2)=ln(x2+1)的图像恰有四个不同交点.
核心考点
试题【已知函数,设(Ⅰ)求函数的单调区间(Ⅱ)若以函数图象上任意一点为切点的切线的斜率恒成立,求实数的最小值(Ⅲ)是否存在实数,使得函数的图象与函数的图象恰有四个不同】;主要考察你对常见函数的导数等知识点的理解。[详细]
举一反三
已知函数,其中为常数.
(Ⅰ)若函数是区间上的增函数,求实数的取值范围;
(Ⅱ)若时恒成立,求实数的取值范围.
题型:不详难度:| 查看答案
已知函数f(x)=2ax--(2+a)lnx(a≥0)
(Ⅰ)当时,求的极值;
(Ⅱ)当a>0时,讨论的单调性;
(Ⅲ)若对任意的a∈(2,3),x­1,x2∈[1,3],恒有成立,求实数m的取值范围。
题型:不详难度:| 查看答案
设函数,曲线通过点(0,2a+3),且在处的切线垂直于y轴.
(I)用a分别表示b和c;
(II)当bc取得最大值时,写出的解析式;
(III)在(II)的条件下,g(x)满足,求g(x)的最大值及相应x值.
题型:不详难度:| 查看答案
已知函数
(I)讨论的单调性;
(Ⅱ)若在(1,+)恒成立,求实数a的取值范围.
题型:不详难度:| 查看答案
已知函数
(1)求的单调区间;
(2)若,在区间恒成立,求a的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.