当前位置:高中试题 > 数学试题 > 常见函数的导数 > 已知函数f(x)=ex-kx2,x∈R.(1)若k=,求证:当x∈(0,+∞)时,f(x)>1;(2)若f(x)在区间(0,+∞)上单调递增,试求k的取值...
题目
题型:不详难度:来源:
已知函数f(x)=exkx2x∈R.
(1)若k,求证:当x∈(0,+∞)时,f(x)>1;
(2)若f(x)在区间(0,+∞)上单调递增,试求k的取值范围;
(3)求证:<e4(n∈N*)..
答案
(1)见解析(2)(3)见解析
解析
(1)证明 f(x)=exx2,则h(x)=f′(x)=exx
h′(x)=ex-1>0(x>0),∴h(x)=f′(x)在(0,+∞)上单调递增,∴f′(x)>f′(0)=1>0.∴f(x)=exx2在(0,+∞)上单调递增,故f(x)>f(0)=1.
(2)解 f′(x)=ex-2kx,求使f′(x)>0(x>0)恒成立的k的取值范围.
k≤0,显然f′(x)>0,f(x)在区间(0,+∞)上单调递增,当k>0时,记φ(x)=ex-2kx,则φ′(x)=ex-2k,当0<k<时,∵ex>e0=1,而2k<1,∴φ′(x)>0,则φ(x)在(0,+∞)上单调递增,于是f′(x)=φ(x)>φ(0)=1>0,∴f(x)在(0,+∞)单调递增;当k时,φ(x)=ex-2kx在(0,ln 2k)上单调递减,在(ln 2k,+∞)上单调递增,于是f′(x)=φ(x)=φ(ln 2k)=eln 2k-2kln 2k,由eln 2k-2kln 2k≥0得2k-2kln 2k≥0,则k.综上,k的取值范围是.
(3)证明 由(1)知,对于x∈(0,+∞),有f(x)=exx2>1,∴e2x>2x2+1,则ln (2x2+1)<2x
从而有ln < (n∈N*),
于是ln +ln +ln +…+ln <+…+<+…+=2+=4-<4,故··…·<e4(n∈N*)
核心考点
试题【已知函数f(x)=ex-kx2,x∈R.(1)若k=,求证:当x∈(0,+∞)时,f(x)>1;(2)若f(x)在区间(0,+∞)上单调递增,试求k的取值】;主要考察你对常见函数的导数等知识点的理解。[详细]
举一反三
已知函数f(x)=(ax2bxc)exf(0)=1,f(1)=0.
(1)若f(x)在区间[0,1]上单调递减,求实数a的取值范围;
(2)当a=0时,是否存在实数m使不等式2f(x)+4xexmx+1≥-x2+4x+1对任意x∈R恒成立?若存在,求出m的值,若不存在,请说明理由.
题型:不详难度:| 查看答案
已知函数f(x)=.
(1)函数f(x)在点(0,f(0))的切线与直线2xy-1=0平行,求a的值;
(2)当x∈[0,2]时,f(x)≥恒成立,求a的取值范围.
题型:不详难度:| 查看答案
已知函数处存在极值.
(1)求实数的值;
(2)函数的图像上存在两点A,B使得是以坐标原点O为直角顶点的直角三角形,且斜边AB的中点在轴上,求实数的取值范围;
(3)当时,讨论关于的方程的实根个数.
题型:不详难度:| 查看答案
已知函数的图像在点处的切线斜率为10.
(1)求实数的值;
(2)判断方程根的个数,并证明你的结论;
(21)探究: 是否存在这样的点,使得曲线在该点附近的左、右两部分分别位于曲线在该点处切线的两侧? 若存在,求出点A的坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
已知函数
(1)若函数存在极大值和极小值,求的取值范围;
(2)设分别为的极大值和极小值,其中的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.