当前位置:高中试题 > 数学试题 > 常见函数的导数 > 设函数在R上存在导数,对任意的R,有,且(0,+)时,.若,则实数a的取值范围为(   )A.[1,+∞)B.(-∞,1]C.(-∞,2]D.[2,+∞)...
题目
题型:不详难度:来源:
设函数在R上存在导数,对任意的R,有,且(0,+)时,.若,则实数a的取值范围为(   )
A.[1,+∞)B.(-∞,1]C.(-∞,2]D.[2,+∞)

答案
B
解析

试题分析:设,,,所以既是增函数又是奇函数,,由已知,得,故选B.
核心考点
试题【设函数在R上存在导数,对任意的R,有,且(0,+)时,.若,则实数a的取值范围为(   )A.[1,+∞)B.(-∞,1]C.(-∞,2]D.[2,+∞)】;主要考察你对常见函数的导数等知识点的理解。[详细]
举一反三
(14分)(2011•福建)已知a,b为常数,且a≠0,函数f(x)=﹣ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数).
(I)求实数b的值;
(II)求函数f(x)的单调区间;
(III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[,e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.
题型:不详难度:| 查看答案
(14分)(2011•广东)设a>0,讨论函数f(x)=lnx+a(1﹣a)x2﹣2(1﹣a)x的单调性.
题型:不详难度:| 查看答案
(14分)(2011•陕西)设f(x)=lnx,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的单调区间和最小值;
(Ⅱ)讨论g(x)与的大小关系;
(Ⅲ)求a的取值范围,使得g(a)﹣g(x)<对任意x>0成立.
题型:不详难度:| 查看答案
(14分)(2011•天津)已知函数f(x)=4x3+3tx2﹣6t2x+t﹣1,x∈R,其中t∈R.
(Ⅰ)当t=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)当t≠0时,求f(x)的单调区间;
(Ⅲ)证明:对任意的t∈(0,+∞),f(x)在区间(0,1)内均存在零点.
题型:不详难度:| 查看答案
(12分)(2011•重庆)设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=﹣对称,且f′(1)=0
(Ⅰ)求实数a,b的值
(Ⅱ)求函数f(x)的极值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.