当前位置:高中试题 > 数学试题 > 常见函数的导数 > 设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为________....
题目
题型:不详难度:来源:
设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为________.
答案

解析
如图:|MN|=f(t)-g(t)=t2-lnt(t>0),

令h(t)=t2-lnt(t>0),
则h′(t)=2t-
令h′(t)>0,得t>
令h′(t)<0,得0<t<
∴h(t)在(0,)上单调递减,在(,+∞)上单调递增.
∴当t=时,h(t)取最小值,即t=时,|MN|取最小值.
核心考点
试题【设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为________.】;主要考察你对常见函数的导数等知识点的理解。[详细]
举一反三
已知函数f(x)=1+x-+…+,则下列结论正确的是(  )
A.f(x)在(0,1)上恰有一个零点
B.f(x)在(0,1)上恰有两个零点
C.f(x)在(-1,0)上恰有一个零点
D.f(x)在(-1,0)上恰有两个零点

题型:不详难度:| 查看答案
已知函数y=f(x)是定义在R上的奇函数,且当x>0时,f(x)+xf′(x)>0(其中f′(x)是f(x)的导函数),设a=(4)f(4),b=f(),c=(lg)f(lg),则a,b,c由大到小的关系是________.
题型:不详难度:| 查看答案
已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=ln x-ax,当x∈(-2,0)时,f(x)的最小值为1,则a的值等于________.
题型:不详难度:| 查看答案
电动自行车的耗电量y与速度x之间有关系y=x3x2-40x(x>0),为使耗电量最小,则速度应定为________.
题型:不详难度:| 查看答案
设f(x)是定义在区间(1,+∞)上的函数,其导函数为f′(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a).
(1)设函数f(x)=ln x+ (x>1),其中b为实数.
①求证:函数f(x)具有性质P(b);
②求函数f(x)的单调区间;
(2)已知函数g(x)具有性质P(2).给定x1,x2∈(1,+∞),x1<x2,设m为实数,α=mx1+(1-m)x2,β=(1-m)x1+mx2,且α>1,β>1,若|g(α)-g(β)|<|g(x1)-g(x2)|,求m的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.