当前位置:高中试题 > 数学试题 > 导数的意义 > 已知函数f(x)=xex(e为自然对数的底).(1)求函数f(x)的单调递增区间;(2)求曲线y=f(x)在点(1,f(1))处的切线方程....
题目
题型:广州二模难度:来源:
已知函数f(x)=xex(e为自然对数的底).
(1)求函数f(x)的单调递增区间;
(2)求曲线y=f(x)在点(1,f(1))处的切线方程.
答案
f(x)=xex⇒f′(x)=ex(x+1)
(1)令f′(x)>0⇒x>-1,即函数f(x)的单调递增区间是(-1,+∞);(6分)
(2)因为f(1)=e,f′(1)=2e,(9分)
所以曲线y=f(x)在点(1,f(1))处的切线方程为
y-e=2e(x-1),即2ex-y-e=0.(12分)
核心考点
试题【已知函数f(x)=xex(e为自然对数的底).(1)求函数f(x)的单调递增区间;(2)求曲线y=f(x)在点(1,f(1))处的切线方程.】;主要考察你对导数的意义等知识点的理解。[详细]
举一反三
设曲线y=e-x(x≥0)在点M(t,c-1c)处的切线l与x轴y轴所围成的三角表面积为S(t).
(Ⅰ)求切线l的方程;
(Ⅱ)求S(t)的最大值.
题型:浙江难度:| 查看答案
定义在R上的可导函数f(x)满足f(-x)=f(x),f(x-2)=f(x+2),且当x∈[0,2]时,f(x)=ex+
1
2
xf(0)
,则f(
7
2
)
f(
16
3
)
的大小关系是(  )
A.f(
7
2
)>f(
16
3
)
B.f(
7
2
)=f(
16
3
)
C.f(
7
2
)<f(
16
3
)
D.不确定
题型:不详难度:| 查看答案
定义在R上的函数f(x)满足f(3)=1,f(-2)=3,f′(x)为f(x)的导函数,已知y=f′(x)的图象如图所示,且f′(x)有且只有一个零点,若非负实数a,b满足f(2a+b)≤1,f(-a-2b)≤3,则
b+2
a+1
的取值范围是(  )
A.[
4
5
,3]
B.(0,
4
5
]∪[3,+∞)
C.[
4
5
,5]
D.(0,
4
5
]∪[5,+∞)
魔方格
题型:大连一模难度:| 查看答案
已知函数f(x)=(x2+bx+c)ex在点P(0,f(0))处的切线方程为2x+y-1=0.
(1)求b,c的值;
(2)求函数f(x)的单调区间;
(3)若方程f(x)=m恰有两个不等的实根,求m的取值范围.
题型:不详难度:| 查看答案
质点M按规律s=2t2+3作直线运动,则质点M在t=1时的瞬时速度是(  )
A.2B.4C.5D.7
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.