当前位置:高中试题 > 数学试题 > 一元二次不等式及其解法 > 已知函数f(x)满足f(x+12)=log12(x2-94),且函数g(x)=log12(2x-2)(1)求函数f(x)的表达式及定义域;(2)若f(x)>g(...
题目
题型:不详难度:来源:
已知函数f(x)满足f(x+
1
2
)=log
1
2
(x2-
9
4
)
,且函数g(x)=log
1
2
(2x-2)

(1)求函数f(x)的表达式及定义域;
(2)若f(x)>g(x),求x的取值范围.
答案
(1)函数f(x)满足f(x+
1
2
)=log
1
2
(x2-
9
4
)

t=x+
1
2
,∴x=t-
1
2

f(x+
1
2
)=log
1
2
(x2-
9
4
)

化为f(t)=log
1
2
((t-
1
2
)
2
-
9
4
)
=log
1
2
(t2-t-2)

∴函数f(x)的表达式:f(x)=log
1
2
(x2-x-2)

要使函数有意义,必须x2-x-2>0,解得x<-1或x>2.
函数的定义域:{x|x<-1或x>2};
(2)由f(x)>g(x),又f(x)=log
1
2
(x2-x-2)
且函数g(x)=log
1
2
(2x-2)

log
1
2
(x2-x-2)>log
1
2
(2x-2)

可得





x2-x-2>0
2x-2>0
x2-x-2<2x-2





x<-1或x>2
x>1
0<x<3
⇒2<x<3.
∴x的取值范围(2,3).
核心考点
试题【已知函数f(x)满足f(x+12)=log12(x2-94),且函数g(x)=log12(2x-2)(1)求函数f(x)的表达式及定义域;(2)若f(x)>g(】;主要考察你对一元二次不等式及其解法等知识点的理解。[详细]
举一反三
已知f(x)=a2x-
1
2
ax(a>0,且a≠1)
(1)求f(x)的值域;
(2)解不等式f(x)
1
2
题型:不详难度:| 查看答案
已知全集U=R,集合A={x|lgx≤0},B={x|2x


2
}
,则A∪B=(  )
A.(-∞,1]B.(-∞,1)C.(1,+∞)D.∅
题型:不详难度:| 查看答案
设f(x)=logag(x)(a>0且a≠1)
(1)若f(x)=log
1
2
(3x-1)
,且满足f(x)>1,求x的取值范围;
(2)若g(x)=ax2-x,是否存在a使得f(x)在区间[
1
2
,3]上是增函数?如果存在,说明a可以取哪些值;如果不存在,请说明理由.
(3)定义在[p,q]上的一个函数m(x),用分法T:p=x0<x1<…<xi-1<xi<…<xn=q
将区间[p,q]任意划分成n个小区间,如果存在一个常数M>0,使得不等式|m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xi)-m(xi-1)|+…+|m(xn)-m(xn-1)|≤M恒成立,则称函数m(x)为在[p,q]上的有界变差函数.试判断函数f(x)=log4(4x2-x)是否为在[
1
2
,3]上的有界变差函数?若是,求M的最小值;若不是,请说明理由.
题型:不详难度:| 查看答案
设函数f(x)=ex-x-1,g(x)=e2x-x-7.
(1)解不等式f(x)≤g(x);
(2)事实上:对于∀x∈R,有f(x)≥0成立,当且仅当x=0时取等号.由此结论证明:(1+
1
x
)x
<e,(x>0).
题型:不详难度:| 查看答案
不等式的解集是
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.