当前位置:高中试题 > 数学试题 > 均值不等式 > 已知直线ax+by-2=0(a>0,b>0)和函数f(x)=ax-2+1(a>0且a≠1)的图象恒过同一个定点,则1a+1b的最小值为 ______....
题目
题型:不详难度:来源:
已知直线ax+by-2=0(a>0,b>0)和函数f(x)=ax-2+1(a>0且a≠1)的图象恒过同一个定点,则
1
a
+
1
b
的最小值为 ______.
答案
∵f(x)=ax-2+1(a>0且a≠1)的图象恒过定点(2,2)
将(2,2)代入到ax+by-2=0中得到:a+b=1
1
a
+
1
b
=(
1
a
+
1
b
)(a+b)=2+
b
a
+
a
b
≥2+2


a
b
×
b
a
=4
当且仅当a=b=0.5时等号成立
故答案为:4.
核心考点
试题【已知直线ax+by-2=0(a>0,b>0)和函数f(x)=ax-2+1(a>0且a≠1)的图象恒过同一个定点,则1a+1b的最小值为 ______.】;主要考察你对均值不等式等知识点的理解。[详细]
举一反三
下列函数值中,最小值是2的是(  )
A.y=
x
8
+
8
x
B.y=
1


x2+2
+


x2+2
C.y=tanx+cotx∈(0,
π
2
)
D.y=lg(x-10)+
1
lg(x-10)
(x>10且x≠11)
题型:不详难度:| 查看答案
已知函数f(x)=log2x(x>0)的反函数为g(x),且有g(a)g(b)=8,若a>0,b>0,则
1
a
+
4
b
的最小值为(  )
A.9B.6C.3D.2
题型:潍坊一模难度:| 查看答案
函数f(x)=-3loga(x-2)+2(a>0且a≠1)的图象经过点A,若点A在直线mx+ny-4=0上,其中mn>0,则
2
m
+
3
n
的最小值为______.
题型:不详难度:| 查看答案
设x,y∈R,且xy≠0,则(x2+
1
y2
)(
1
x2
+4y2)
的最小值为______.
题型:湖南难度:| 查看答案
若直线ax+2by-2=0(a,b>0)始终平分圆x2+y2-4x-2y-8=0的周长,则
1
a
+
2
b
的最小值为______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.