当前位置:高中试题 > 数学试题 > 数列综合 > 已知数列{an}的前n项和Sn=1-nan(n∈N*).(1)计算a1,a2,a3,a4;(2)猜想an的表达式,并用数学归纳法证明你的结论....
题目
题型:不详难度:来源:
已知数列{an}的前n项和Sn=1-nan(n∈N*)
(1)计算a1,a2,a3,a4
(2)猜想an的表达式,并用数学归纳法证明你的结论.
答案
(1)计算得a1=
1
2
a2=
1
6
a3=
1
12
a4=
1
20

(2)猜测:an=
1
n(n+1)
.下面用数学归纳法证明
①当n=1时,猜想显然成立.
②假设n=k(k∈N*)时,猜想成立,
ak=
1
k(k+1)

那么,当n=k+1时,Sk+1=1-(k+1)ak+1
即Sk+ak+1=1-(k+1)ak+1
Sk=1-kak=
k
k+1

所以
k
k+1
+ak+1=1-(k+1)ak+1

从而ak+1=
1
(k+1)(k+2)
=
1
(k+1)[(k+1)+1]

即n=k+1时,猜想也成立.
故由①和②,可知猜想成立.
核心考点
试题【已知数列{an}的前n项和Sn=1-nan(n∈N*).(1)计算a1,a2,a3,a4;(2)猜想an的表达式,并用数学归纳法证明你的结论.】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
已知数列{an} 的前n项和为Sn,且Sn=2an-2,(n=1,2,3,…);数列 {bn}中,b1=1,点p(bn,bn+1)在直线x-y+2=0上.
(Ⅰ)求数列{an} 和 {bn}的通项公式;
(Ⅱ)设数列{
bn+1
2
}的前n和为Sn,求
1
S1
+
1
S2
+…+
1
Sn

(Ⅲ)设数列{cn}的前n项和为Tn,且cn=an•bn,求Tn
题型:不详难度:| 查看答案
已知等差数列{an}的前n项和为Sn,且S5=30,a1+a3=8,n∈N*
(I)求数列{an}的通项公式an
(Ⅱ)记bn=2an,求{bn}的前n项和为Tn
题型:不详难度:| 查看答案
设数列{an}满足a1=a,an+1=can+1-c,n∈N*其中a,c为实数,且c≠0
(Ⅰ)求数列{an}的通项公式
(Ⅱ)设a=
1
2
,c=
1
2
,bn=n(1-an),n∈N*,求数列{bn}的前n项和Sn
(Ⅲ)若0<an<1对任意n∈N*成立,求实数c的范围.(理科做,文科不做)
题型:不详难度:| 查看答案
手表的表面在一平面上.整点1,2,…,12这12个数字等间隔地分布在半径为1的圆周上.从整点i到整点i+1的向量记作


titi+1
,则


t1t2


t2t3
+


t2t3


t3t4
+…+


t12t1


t1t2
=______.
题型:不详难度:| 查看答案
数列{an}的通项公式an=ncos
2
,其前n项和为Sn,则S2012等于(  )
A.1006B.2012C.503D.0
题型:福建难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.