当前位置:高中试题 > 数学试题 > 数列综合 > 已知数列{an}的前n项和Sn满足Sn=12(1-an)(n∈N*).(Ⅰ)求数列{an}的通项公式,并比较sn与12的大小;(Ⅱ)设函数f(x)=log13x...
题目
题型:不详难度:来源:
已知数列{an}的前n项和Sn满足Sn=
1
2
(1-an)(n∈N*).
(Ⅰ)求数列{an}的通项公式,并比较sn
1
2
的大小;
(Ⅱ)设函数f(x)=log
1
3
x
,令bn=f(a1)+f(a2)+…+f(an),求数列{
1
bn
}
的前n项和Tn
答案
(Ⅰ)当n≥2时,an=
1
2
(1-an)-
1
2
(1-an-1)=-
1
2
an+
1
2
an-1
2an=-an+an-1,.∴
an
an-1
=
1
3
,由S1=a1=
1
2
(1-a1)得a1=
1
3

∴数列{an}是首项a1=
1
3
公比为
1
3
的等比数列
an=
1
3
×(
1
3
n-1=(
1
3
n
由Sn=
1
2
(1-an)=
1
2
(1-(
1
3
n
∵1-(
1
3
n<1
1
2
(1-(
1
3
n)<
1
2

∴sn
1
2

(Ⅱ)f(x)=log
1
3
x

∴bn=f(a1)+f(a2)+…+f(an)=log
1
3
(a1a2an
=log
1
3
1
3
1+2+…n=
n(n+1)
2

1
bn
=
2
n(n+1)
=2(
1
n
-
1
n+1

∴Tn=2[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]=
2n
n+1
核心考点
试题【已知数列{an}的前n项和Sn满足Sn=12(1-an)(n∈N*).(Ⅰ)求数列{an}的通项公式,并比较sn与12的大小;(Ⅱ)设函数f(x)=log13x】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
已知数列{an}的前n项和为Sn,且对任意正整数n,有Sn
a
2(a-1)
an
,n(a≠0,a≠1)成等差数列,令bn=(an+1)lg(an+1).
(1)求数列{an}的通项公式an(用a,n表示)
(2)当a=
8
9
时,数列{bn}是否存在最小项,若有,请求出第几项最小;若无,请说明理由;
(3)若{bn}是一个单调递增数列,请求出a的取值范围.
题型:不详难度:| 查看答案
在数列{an}中,a1=-
1
3
,n∈N*
,当n≥2时,有3an-2an-1+n+2=0,设bn=an+n+1.
(I)求b1,b2
(II)证明数列{bn-1}是等比数列;
(III)设cn=
(
2
3
)
n
2
b2n
+bn
,求数列{cn}的前n项和Tn
题型:成都一模难度:| 查看答案
数列{an}中,a1=1,a2=
2
3
,且
1
an-1
+
1
an+1
=
2
an

(1)求an
(2)设bn=anan+1,求b1+b2+b3+…bn
(3)求证:a12+a22+a32+…+an2<4
题型:不详难度:| 查看答案
已知数列{an}的通项公式an=log2
n+1
n+2
(n∈N*)
,设前n项和为Sn,则使Sn<-5成立的自然数n的最小值是______.
题型:和平区三模难度:| 查看答案
已知数列{an}中,a1=
5
6
,若以a1,a2,…,an为系数的二次方程an-1x2-anx+1=0(n∈N+,n≥2)都有根α,β且3α-αβ+3β=1,则{an}的前n项和Sn=______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.