题目
题型:不详难度:来源:
1 |
a1 |
1 |
a2 |
1 |
a2012 |
1 |
a2013 |
答案
用叠加法:an=a1+(a2-a1)+…+(an-an-1)=1+2+…+n=
n(n+1) |
2 |
所以
1 |
an |
2 |
n(n+1) |
1 |
n |
1 |
n+1 |
所以
1 |
a1 |
1 |
a2 |
1 |
a2012 |
1 |
a2013 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
2013 |
1 |
2014 |
2013 |
2014 |
2013 |
1007 |
故答案为:
2013 |
1007 |
核心考点
举一反三
1 |
a1 |
1 |
a2 |
1 |
a2012 |
1 |
a2013 |
n(n+1) |
2 |
1 |
an |
2 |
n(n+1) |
1 |
n |
1 |
n+1 |
1 |
a1 |
1 |
a2 |
1 |
a2012 |
1 |
a2013 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
2013 |
1 |
2014 |
2013 |
2014 |
2013 |
1007 |
2013 |
1007 |