当前位置:高中试题 > 数学试题 > 数列综合 > 数列{an}中,a3=1,a1+a2+…+an=an+1(n∈N*).(Ⅰ)求a1,a2,a4,a5;(Ⅱ)求数列{an}的前n项和Sn;(Ⅲ)设bn=log2...
题目
题型:不详难度:来源:
数列{an}中,a3=1,a1+a2+…+an=an+1(n∈N*).
(Ⅰ)求a1,a2,a4,a5
(Ⅱ)求数列{an}的前n项和Sn
(Ⅲ)设bn=log2Sn,存在数列{cn}使得cn•bn+3•bn+4=n(n+1)(n+2)Sn,试求数列{cn}的前n项和Tn
答案
(Ⅰ)当n=1时,有a1=a2;当n=2时,有a1+a2=a3;…
∵a3=1,
∴a1=
1
2
,a2=
1
2
,a4=2,a5=4.…(4分)
(Ⅱ)∵Sn=an+1=Sn+1-Sn,…(6分)
∴2Sn=Sn+1
Sn+1
Sn
=2…(8分)
∴{Sn}是首项为S1=a1=
1
2
,公比为2的等比数列.
∴Sn=
1
2
•2n-1=2n-2…(10分)
(Ⅲ)由Sn=2n-2,得bn=n-2,
∴bn+3=n+1,bn+4=n+2,
∵cn•bn+3•bn+4=n(n+1)(n+2)Sn
∴cn•(n+1)(n+2)=n(n+1)(n+2)2n-2
即cn=n•2n-2.  …(12分)
Tn=1×2-1+2×20+3×21+4×22+…+n•2n-2…①
则2Tn=1×20+2×21+3×22+…+(n-1)•2n-2+n•2n-1…②
②一①得
Tn=n•2n-1-2-1-20-21-…-2n-2=n•2n-1-
2-1(1-2n)
1-2
=n•2n-1+
1
2
.…(14分)
核心考点
试题【数列{an}中,a3=1,a1+a2+…+an=an+1(n∈N*).(Ⅰ)求a1,a2,a4,a5;(Ⅱ)求数列{an}的前n项和Sn;(Ⅲ)设bn=log2】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
f(n)=1+
1
2
+
1
3
+…+
1
n
(n∈N*)
,是否存在g(n),使得等式f(1)+f(2)+f(3)+…+f(n)+n=ng(n)f(n)总成立?若存在,请写出g(n)通项公式(不必说明理由);若不存在,说明理由.______.
题型:奉贤区二模难度:| 查看答案
已知数列{an}的首项a1=
1
2
,前n项和Sn=n2an
(Ⅰ)求证:an+1=
n
n+2
an

(Ⅱ)记bn=lnSn,Tn为{bn}的前n项和,求e-Tn-n的值.
题型:不详难度:| 查看答案
已知数列{an}与{bn}有如下关系:a1=2,an+1=
1
2
(an+
1
an
),bn=
an+1
an-1

(1)求数列{bn}的通项公式.
(2)设Sn是数列{an}的前n项和,当n≥2时,求证:Sn<n+
4
3
题型:不详难度:| 查看答案
数列{an}的通项an=n2(cos2
3
-sin2
3
),其前n项和为Sn,则S30为(  )
A.470B.490C.495D.510
题型:江西难度:| 查看答案
已直数列{an}的前n项和为Sn,若an=
1


n
+


n-1
 (n∈N*)
,则S2009的值为(  )
A.


2008
B.


2008
-1
C.


2009
D.


2009
-1
题型:成都二模难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.