当前位置:高中试题 > 数学试题 > 数列综合 > 已知数列{an}和{bn},an=n,bn=2n,定义无穷数列{cn}如下:a1,b1,a2,b2,a3,b3,…,an,bn,…(1)写出这个数列{cn}的一...
题目
题型:不详难度:来源:
已知数列{an}和{bn},an=n,bn=2n,定义无穷数列{cn}如下:a1,b1,a2,b2,a3,b3,…,an,bn,…
(1)写出这个数列{cn}的一个通项公式(不能用分段函数)
(2)指出32是数列{cn}中的第几项,并求数列{cn}中数值等于32的两项之间(不包括这两项)的所有项的和
(3)如果cx=cy(x,y∈N*,且x<y),求函数y=f(x)的解析式,并计算cx+1+cx+3+…+cy(用x表示)
答案
(1)a1,b1,a2,b2,a3,b3,…,an,bn,…
    即n,2n,n,2n,n,2n,n,2n,…
    不妨:cn= [1+(-1)n+1] •
(n+1)
4
+[1+(-1)n] •2
n
2
- 1

    (2)32=a32=b5,b5=c10,a32=c63
    数列{cn}中数值等于32的两项之间(不包括这两项)的所有项的和为:
    a6+a7+…+a31+b6+b7+…+b31=
26(6+31)
2
-(26-232)=481-64+232=4294967713.
(3)∵cx=cy(x,y属于正整数,且x<y),
y=2(
x
2
+1)
-1

cx+1+cx+3+…+cy=
[2
x
2
-
x
2
][
x
2
+1+2
x
2
]   
2
-2(
x
2
+1)
+2[2
x
2
]
核心考点
试题【已知数列{an}和{bn},an=n,bn=2n,定义无穷数列{cn}如下:a1,b1,a2,b2,a3,b3,…,an,bn,…(1)写出这个数列{cn}的一】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0,n∈N.
(1)求数列{an}的通项;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn
题型:不详难度:| 查看答案
在数列{an}中,已知a1=
1
4
an+1
an
=
1
4
bn+2=3log
1
4
an(n∈N*)

(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等差数列;
(3)设数列{cn}满足cn=an•bn,求{cn}的前n项和Sn
题型:济南三模难度:| 查看答案
设n∈N*,圆Cn:x2+y2=
R2n
(Rn>0)与y轴正半轴的交点为M,与曲线y=


x
的交点为N(
1
n
yn
),直线MN与x轴的交点为A(an,0).
(1)用n表示Rn和an
(2)求证:an>an+1>2;
(3)设Sn=a1+a2+a3+…+an,Tn=1+
1
2
+
1
3
+…+
1
n
,求证:
7
5
Sn-2n
Tn
3
2
题型:佛山一模难度:| 查看答案
(理科)已知各项均为正数的数列{an}的前n项和为Sn,且对任意正整数n,点(an,Sn)都在直线2x-y-
1
2
=0上.
(1)求数列{an}的通项公式;
(2)若an2=2 -bn设Cn=
bn
an
求数列{Cn}前n项和Tn
题型:不详难度:| 查看答案
设an表示满足不等式



x>0
y>0
y≤-nx2+10n
的整数对(x,y)的个数(其中整数对是指x,y都为整数的有序实数对),则
1
4024
(a2+a4+…a2012)
=(  )
A.1012B.2014C.4024D.4028
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.