当前位置:高中试题 > 数学试题 > 数列综合 > 已知等差数列{an}的前n项和为Sn,且a3=5,S15=225;等比数列{bn}满足:b3=a2+a3,b2b5=128(1)求数列{an}和{bn}的通项公...
题目
题型:不详难度:来源:
已知等差数列{an}的前n项和为Sn,且a3=5,S15=225;等比数列{bn}满足:b3=a2+a3,b2b5=128
(1)求数列{an}和{bn}的通项公式
(2)记cn=an+bn求数列{cn}的前n项和为Tn
答案
(1)设an=a1+(n-1)d,Sn=
n(a1+an
2

所以 a3=a1+2d=5      ①,
S15=
15( a1+a15)
2
=15(a1+7d)=225
a1+7d=15         ②
①②联立解得d=2,a1=1,
∴数列{an}的通项公式为an=2n-1
设bn=b1•q(n-1)
所以 b3=a2+a3=8,
b2=
b3
q
,b5=b3•q2
∴b2•b5=b32•q=64•q=128
∴q=2
∴数列{bn}的通项公式为bn=b3•qn-3=2n(n=1,2,3,…).
(2)∵cn=(2n-1)•2n
∵Tn=2+3•22+5•23+…+(2n-1)•2n
2Tn=22+3•23+5•24+…+(2n-3)•2n+(2n-1)•2 n+1
作差:-Tn=2+23+24+25+…+2 n+1-(2n-1)•2 n+1
=2+23(1-2n-1)1-2-(2n-1)•2n+1
=2+
23(1-2n-1)
1-2
-(2n-1)•2 n+1
=2+2n+2-8-2 n+2n+2 n+1=-6-2n+1•(2n-3)
∴Tn=(2n-3)•2 n+1+6(n=1,2,3,…).
核心考点
试题【已知等差数列{an}的前n项和为Sn,且a3=5,S15=225;等比数列{bn}满足:b3=a2+a3,b2b5=128(1)求数列{an}和{bn}的通项公】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
已知数列{an}中,a1=1,an+1=
an
2an+1
(n∈N).
(1)求数列{an}的通项公式an
(2)设:
2
bn
=
1
an
+1
 求数列{bnbn+1}的前n项的和Tn
(3)已知P=(1+b1)(1+b3)(1+b5)…(1+b2n-1),求证:Pn>


2n+1
题型:不详难度:| 查看答案
已知等差数列{an}各项都不相同,前3项和为18,且a1、a3、a7成等比数列
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=2,求数列{
1
bn
}
的前n项和Tn
题型:不详难度:| 查看答案
已知函数f(x)=-


4+
1
x2
,数列{an},点Pn(an,-
1
an+1
)在曲线y=f(x)上(n∈N+),且a1=1,an>0.
( I)求数列{an}的通项公式;
( II)数列{bn}的前n项和为Tn且满足bn=an2an+12,求Tn
题型:不详难度:| 查看答案
已知等差数列{an}中,a1=1,前10项和S10=100;
(1)求数列{an}的通项公式; 
(2)设log2bn=an,证明{bn}为等比数列,并求{bn}的前四项之和.
(3)设cn=bn+an,求{cn}的前五项之和.
题型:不详难度:| 查看答案
设数列{an}满足an≠0,a1=1,an=(1-2n)anan-1+an-1(n≥2),数列{an}的前n项和为Sn
(1)求数列{an}的通项公式;
(2)求证:当n≥2时,
n
n+1
Sn<2

(3)试探究:当n≥2时,是否有
6n
(n+1)(2n+1)
Sn
5
3
?说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.