当前位置:高中试题 > 数学试题 > 数列综合 > 已知无穷数列{an}的前n项和为Sn,且满足Sn=Aa2n+Ban+C,其中A、B、C是常数.(1)若A=0,B=3,C=-2,求数列{an}的通项公式;(2)...
题目
题型:不详难度:来源:
已知无穷数列{an}的前n项和为Sn,且满足Sn=A
a2n
+Ban+C
,其中A、B、C是常数.
(1)若A=0,B=3,C=-2,求数列{an}的通项公式;
(2)若A=1,B=
1
2
C=
1
16
,且an>0,求数列{an}的前n项和Sn
(3)试探究A、B、C满足什么条件时,数列{an}是公比不为-1的等比数列.
答案
(1)∵Sn=A
a2n
+Ban+C
,A=0,B=3,C=-2,
∴Sn=3an-2,
∴当n=1时,a1=3a1-2,解得a1=1;
当n≥2时,an=Sn-Sn-1=3an-3an-1
整理,得2an=3an-1
an
an-1
=
3
2

an=(
3
2
)n-1

(2)∵Sn=A
a2n
+Ban+C
,A=1,B=
1
2
,C=
1
16

Sn=
a2n
+
1
2
an+
1
16

∴当n=1时,a1=
a21
+
1
2
a1+
1
16
,解得a1=
1
4

当n≥2时,an=Sn-Sn-1=
a2n
-
a2n-1
+
1
2
an-
1
2
an-1

整理,得(an+an-1)(an-an-1-
1
2
)=0

∵an>0,∴an-an-1=
1
2

∴{an}是首项为
1
4
,公差为
1
2
的等差数列,
Sn=
n
4
+
n(n-1)
4
=
n2
4

(3)若数列{an}是公比为q的等比数列,
①当q=1时,an=a1,Sn=na1
Sn=A
a2n
+Ban+C
,得na1=A
a21
+Ba1+C
恒成立
∴a1=0,与数列{an}是等比数列矛盾;
②当q≠±1,q≠0时,an=a1qn-1Sn=
a1
q-1
qn-
a1
q-1

Sn=A
a2n
+Ban+C
恒成立,
a21
q2
×q2n+(B×
a1
q
-
a1
q-1
qn+C+
a1
q-1
=0
对于一切正整数n都成立
∴A=0,B=
q
q-1
≠1
1
2
或0,C≠0,
事实上,当A=0,B≠1或
1
2
或0,C≠0时,
Sn=Ban+Ca1=
C
1-B
≠0

n≥2时,an=Sn-Sn-1=Ban-Ban-1
an
an-1
=
B
B-1
≠0
或-1
∴数列{an}是以
C
1-B
为首项,以
B
B-1
为公比的等比数列.
核心考点
试题【已知无穷数列{an}的前n项和为Sn,且满足Sn=Aa2n+Ban+C,其中A、B、C是常数.(1)若A=0,B=3,C=-2,求数列{an}的通项公式;(2)】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
已知数列{an}的前n项和Sn=
n+n2
2k-1
(n∈N*,k是与n无关的正整数).
(1)求数列{an}的通项公式,并证明数列{an}是等差数列;
(2)设数列{an}满足不等式:|a1-1|+|a2-1|+…|a2k-1-1|+|a2k-1|≤6,求所有这样的k的值.
题型:不详难度:| 查看答案
已知{an}是首项为1的等差数列,Sn是{an}的前n项和,且S5=a13,则数列{
1
anan+1
}
的前5项和为(  )
A.
10
11
B.
5
11
C.
4
5
D.
2
5
题型:不详难度:| 查看答案
已知数列2008,2009,1,-2008,-2009,…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2013项之和S2013等于(  )
A.2008B.2010C.4018D.1
题型:不详难度:| 查看答案
已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N*,数列{bn}满足an=4log2bn+3,n∈N*
(1)求an,bn
(2)求数列{an?bn}的前n项和Tn
题型:不详难度:| 查看答案
已知:等差数列{an}中,a4=14,a7=23.
(1)求an
(2)将{an}中的第2项,第4项,…,第2n项按原来的顺序排成一个新数列,求此数列的前n项和Gn
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.