当前位置:高中试题 > 数学试题 > 数列综合 > 项数为n的数列a1,a2,a3,…,an的前k项和为Sk(k=1,2,3,…,n),定义S1+S2+…+Snn为该项数列的“凯森和”,如果项数为99项的数列a1...
题目
题型:不详难度:来源:
项数为n的数列a1,a2,a3,…,an的前k项和为Sk(k=1,2,3,…,n),定义
S1+S2+…+Sn
n
为该项数列的“凯森和”,如果项数为99项的数列a1,a2,a3,…,a99的“凯森和”为1000,那么项数为100的数列100,a1,a2,a3,…,a99的“凯森和”为(  )
A.991B.1001C.1090D.1100
答案
∵项数为99项的数列a1,a2,a3,…,a99的“凯森和”为1000,
S1+S2+…+S99
99
=1000,
∴100,a1,a2,a3,…,a99的“凯森和”为
100+100+S1+100+S2+…+100+S99
100
=100+
S1+S2+…+S99
100
=100+990=1090,
故选C.
核心考点
试题【项数为n的数列a1,a2,a3,…,an的前k项和为Sk(k=1,2,3,…,n),定义S1+S2+…+Snn为该项数列的“凯森和”,如果项数为99项的数列a1】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
在等差数列{an}中,a3+a4+a5=84,a9=73.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对任意m∈N*,将数列{an}中落入区间(9m,92m)内的项的个数记为bm,求数列{bm}的前m项和Sm
题型:不详难度:| 查看答案
一个等比数列的前n项之和是2n-b,那么它的前n项的各项平方之和为(  )
A.(2n-1)2B.
1
3
(2n-1)
C.4n-1D.
1
3
(4n-1)
题型:不详难度:| 查看答案
已知数列{an}满足Sn=n2an(n∈N*),其中Sn是{an}的前n项和,且a1=1,求
(1)求an的表达式;
(2)求Sn
题型:不详难度:| 查看答案
已知在等比数列{an}中,2a2=a1+a3-1,a1=1.
(1)若数列{bn}满足b1+
b2
2
+
b3
3
+…+
bn
n
=an(n∈N*),求数列{bn}的通项公式;
(2)求数列{bn}的前n项和Sn
题型:不详难度:| 查看答案
已知递增的等比数列{an}满足:a2+a3+a4=28,a3+2是a2与a4的等差中项.
(1)求数列{an}的通项公式;
(2)假设bn=
an
(an+1)(an+1+1)
,其数列{bn}的前n项和Tn,并解不等式Tn
127
390
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.