当前位置:高中试题 > 数学试题 > 等比数列 > 已知等差数列{an}的各项均为正整数,a1=1,前n项和为Sn,又在等比数列{bn}中,b1=2,b2S2=16,且当n≥2时,有ban=4ban-1成立,n∈...
题目
题型:不详难度:来源:
已知等差数列{an}的各项均为正整数,a1=1,前n项和为Sn,又在等比数列{bn}中,b1=2,b2S2=16,且当n≥2时,有ban=4ban-1成立,n∈N*
(1)求数列{an}与{bn}的通项公式;
(2)设cn=
6bn
b2n
-1
,证明:c1+c2+…+cn
4
5
(9-
8
2n
)
答案
(1)∵等差数列{an}的各项均为正整数,
∴设等差数列{an}的公差为d,d∈N,等比数列{bn}的公比为q,
则∵a1=1,b1=2,b2S2=16,当n≥2时,有ban=4ban-1成立,
∴2q•(2+d)=16…①
qd=4…②
解得q=d=2
故an=2n-1,bn=2n
(2)∵cn=
6bn
b2n
-1
=
6•2n
22n-1
6•2n
22n-1
=
6
2n-1

∴c1+c2+…+cn6(
1
20
+
1
2
+
1
22
+…+
1
2n-1
)
=
1
20
•(1-
1
2n
)
1-
1
2
=3(1-
1
2n
)

又由n∈N*,则0<1-
1
2n
<1

所以3(1-
1
2n
)<
32
5
(1-
1
2n
)<
4
5
+
32
5
(1-
1
2n
)
=(
36
5
-
32
5
1
2n
)=
4
5
(9-
8
2n
)

c1+c2+…+cn
4
5
(9-
8
2n
)
核心考点
试题【已知等差数列{an}的各项均为正整数,a1=1,前n项和为Sn,又在等比数列{bn}中,b1=2,b2S2=16,且当n≥2时,有ban=4ban-1成立,n∈】;主要考察你对等比数列等知识点的理解。[详细]
举一反三
在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*
(1)证明:数列{an-n}是等比数列,并求数列{an}的通项公式;
(2)记bn=
n
an-n
,数列{bn}的前n项和为Sn,求证:Sn+bn
16
9
题型:安徽模拟难度:| 查看答案
已知等比数列{an}的公比q=-
1
3
,则
a1+a3+a5+a7
a2+a4+a6+a8
的值为______.
题型:不详难度:| 查看答案
数列{an}中,a1=2,an+1=an+cn(c是不为0的常数,n∈N*),且a1,a2,a3成等比数列.
(1)求数列{an}的通项公式;
(2)若bn=
an-c
n•cn
,求数列{bn}的前n项和Tn
题型:临汾模拟难度:| 查看答案
已知{an}是各项均为正数的等比数列,a1a2a3=5,a7a8a9=10,则a4a5a6=______.
题型:湖北模拟难度:| 查看答案
设Sn为数列{an}的前n项和,对任意的n∈N*,都有Sn=(m+1)-man(m为常数,且m>0).
(1)求证:数列{an}是等比数列.
(2)设数列{an}的公比q=f(m),数列{bn}满足b1=2a1,bn=f(bn-1)(n≥2,n∈N*),求数列{bn}的通项公式.
(3)在满足(2)的条件下,求数列{
2n+1
bn
}
的前n项和Tn
题型:韶关模拟难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.