当前位置:高中试题 > 数学试题 > 等比数列 > 已知数列{an}的前n项和为Sn,且Sn=2-qan1-q(n∈N*)其中q为非零常数,函数f(x)=12x2+2x-12,数列{bn}满足bn+1=f′(bn...
题目
题型:合肥模拟难度:来源:
已知数列{an}的前n项和为Sn,且Sn=
2-qan
1-q
(n∈N*)其中q为非零常数,函数f(x)=
1
2
x2+2x-
1
2
,数列{bn}满足bn+1=f′(bn),(n∈N*),b1=f(1),设cn=
1
12
anbn
,{bn}的前n项和为TnBn=
1
T1
+
1
T2
+…+
1
Tn
,求An=c1+c2+…+cn
(Ⅰ)求证:数列{an}为等比数列;
(Ⅱ)当q=
1
3
时,试比较f(
4
3
An)
与f(Bn)的大小,并说明理由.
答案
(Ⅰ)Sn=
2-qan
1-q
⇒(1-q)Sn=2-qan
且q≠1
当n=1时,(1-q)S1=2-qa1⇒a1=2
当n≥2时,(1-q)Sn-(1-q)Sn-1=qan-1-qan⇒an=qan-1
∴{an}是以2为首项,公比为q的等比数列.
(Ⅱ) 当q=
1
3
时,由(1)得 an=2(
1
3
)
n-1

又 f(x)=
1
2
x2+2x-
1
2
,∴f′(x)=x+2
由bn+1=f′(bn)得bn+1=f′(bn)=bn+2
∴{bn}是以2为首项,公差为2的等差数列,
故bn=2n
∴cn=
1
12
anbn=n(
1
3
)n
     Tn=
n(b1+bn)
2
=n(n+1),
Bn=
1
T1
+
1
T2
+…+
1
Tn
=
1
1×2
+
1
2×3
+…+
1
n(n+1)
=1-
1
n+1

An=c1+c2+…+cn=1•
1
3
+2(
1
3
)
2
+…+n(
1
3
)
n
…①
1
3
An=1•(
1
3
)2+2(
1
3
)3+3(
1
3
)4+…+(n-1)(
1
3
)n+n(
1
3
)n+1
…②
①-②得∴
2
3
An=1•(
1
3
)1+(
1
3
)2+(
1
3
)3+…+(
1
3
)n-n(
1
3
)n+1

=
1
3
(1-
1
3n
)
1-
1
3
-n(
1
3
)n+1=
1-
1
3n
2
-n(
1
3
)n+1

4
3
An=1-
1
3n
-
2n
3
1
3n

4
3
An-Bn=1-
1
3n
-
2n
3
1
3n
-1+
1
n+1
=
1
n+1
-
2n+3
3n+1
=
3n+1-(2n2+5n+3)
(n+1)•3n+1

当n=1时,
4
3
An-Bn=
3n+1-(2n2+5n+3)
(n+1)•3n+1
=
9-10
18
<0
4
3
AnBn

当n≥2时,
令g(x)=3x+1-(2x2+5x+3)
则g′(x)=3x+1ln3-(4x+5),g(x)=3x+1(ln3)2-4在[2,+∞)上为单调增函数,
∴g(x)=3x+1(ln3)2-4≥33(ln3)2-4>0
∴g′(x)=3x+1ln3-(4x+5)在[2,+∞)上为单调增函数,
g′(x)=3x+1ln3-(4x+5)≥33ln3-9>27-9>0
g(x)=3x+1-(2x2+5x+3)在[2,+∞)上为单调增函数,
∴当n≥2时,g(n)=3n+1-(2n2+5n+3)≥33-(2×4+10+3)>0
即当n≥2时,
4
3
An-Bn=
3n+1-(2n2+5n+3)
(n+1)•3n+1
>0
∴当n≥2时,
4
3
AnBn

又f′(x)=x+2>0对x≥0恒成立,
∴f(x)在[0,+∞)上单调递增,
∴当n=1时f(
4
3
An
)<f(Bn
当n≥2时f(
4
3
An
)>f(Bn).
核心考点
试题【已知数列{an}的前n项和为Sn,且Sn=2-qan1-q(n∈N*)其中q为非零常数,函数f(x)=12x2+2x-12,数列{bn}满足bn+1=f′(bn】;主要考察你对等比数列等知识点的理解。[详细]
举一反三
数列{an}中,a1=2,an+1=an+cn(c是常数,n=1,2,3,…),且a1,a2,a3成公比不为1的等比数列.则c的值是______.
题型:不详难度:| 查看答案
已知数列{an}满足a1=
7
6
,Sn是{an}的前n项和,点(2Sn+an,Sn+1)在f(x)=
1
2
x+
1
3
的图象上,数列{bn}中,b1=1,且
bn+1
bn
=
n
n+1
 (n∈N*).
(1)证明数列{an-
2
3
}是等比数列;
(2)分别求数列{an}和{bn}的通项公式an和bn
(3)若cn=
an-
2
3
bn
,Tn为数列{cn}的前n项和,n∈N*,求Tn并比较Tn与1的大小(只需写出结果,不要求证明).
题型:不详难度:| 查看答案
已知点(x,y)是区域





x+2y≤2n
x≥0
y≥0
,(n∈N*)内的点,目标函数z=x+y,z的最大值记作zn.若数列{an}的前n项和为Sn,a1=1,且点(Sn,an)在直线zn=x+y上.
(Ⅰ)证明:数列{an-2}为等比数列;
(Ⅱ)求数列{Sn}的前n项和Tn
题型:不详难度:| 查看答案
已知公比是3的等比数列{an}中,满足a2+a4+a6=9,则log
1
3
(a5+a7+a9)的值是(  )
A.
1
5
B.-
1
5
C.-5D.5
题型:不详难度:| 查看答案
6+2


5
6-2


5
的等比中项是(  )
A.4B.±4C.6D.-6
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.