当前位置:高中试题 > 数学试题 > 等比数列 > 已知递增数列{an}满足:a1=1,2an+1=an+an+2(n∈N+),且a1,a2,a4成等比数列(1)求数列{an}的通项公式an.(2)若数列{bn}...
题目
题型:不详难度:来源:
已知递增数列{an}满足:a1=1,2an+1=an+an+2(n∈N+),且a1,a2,a4成等比数列
(1)求数列{an}的通项公式an
(2)若数列{bn}满足:bn+1=bn2-(n-2)bn+3,且b1≥1,n∈N+
①用数学归纳法证明:bn≥an
②记Tn=
1
3+b1
+
1
3+b2
+
1
3+b3
+
+
1
3+bn
,证明:Tn
1
2
答案
(1)∵a1=1,2an+1=an+an+2(n∈N+
∴数列{an}是以1为首项的等差数列,设公差为d,由数列递增可知d>0
∵a1,a2,a4成等比数
∴(1+d)2=1+3d
∴d=0(舍)或d=1
∴an=1+n-1=n
证明:(2)①∵bn+1=bn2-(n-2)bn+3,且b1≥1,
(i)当n=1时,b1≥1=a1成立
(ii)假设当n=k(k≥1)时成立,即bk≥ak=k
∴bk+1≥k+1=ak+1
当n=k+1时,bk+1=bk2-(k-2)bk+3,
∴bk+1-ak+1=bk+1-(bk+1)=bk2-(k-1)bk+2>k2-k(k-1)+2>0
∴bk+1≥ak+1
综上可证得,对于任意的正整数n,bn≥an都成立
②∵bn+1=bn2-(n-2)bn+3,∴
1
3+bn+3
=
1
bn2-(n-2)bn+6

bn2-(n-2)bn+6=bn(bn+2-n)+6≥2bn+6=2(bn+3),(∵bn≥n)
1
bn+1+3
1
2
1
bn+3

Tn=
1
3+b1
+
1
3+b2
+
1
3+b3
+
+
1
3+bn
1
3+b1
+
1
2
1
3+b1
+
1
2
1
3+b2
+…+
1
2
1
3+bn-1
…①
-
1
2
Tn=-
1
2
1
3+b1
-
1
2
1
3+b2
-
1
2
1
3+b3
-
-
1
2
1
3+bn
…②,
①+②可得
1
2
Tn
1
3+b1
-
1
2
1
3+bn-1

1
2
Tn
1
3+b1
1
4

Tn
1
2

Tn=
1
3+b1
+
1
3+b2
+
1
3+b3
+
+
1
3+bn
1
2
核心考点
试题【已知递增数列{an}满足:a1=1,2an+1=an+an+2(n∈N+),且a1,a2,a4成等比数列(1)求数列{an}的通项公式an.(2)若数列{bn}】;主要考察你对等比数列等知识点的理解。[详细]
举一反三
无穷等比数列{an}的各项和为S,若数列{bn}满足bn=a3n-2+a3n-1+a3n,则数列{bn}的各项和为(  )
A.SB.3SC.S2D.S3
题型:不详难度:| 查看答案
在等比数列{an}中,首项a1=
2
3
,a4=
41
(1+2x)dx,则公比为______.
题型:不详难度:| 查看答案
在等比数列{an}中,已知a2a8=p2,则a3a5a7等于(  )
A.±p3B.p3C.-p3D.无法确定
题型:不详难度:| 查看答案
在△ABC中,a,b,c分别是A,B,C的对边,已知a,b,c成等比数列,且a2-c2=ac-bc,则
c
bsinB
的值为(  )
A.
1
2
B.


3
2
C.
2


3
3
D.


3
题型:不详难度:| 查看答案
已知等比数列{an}的公比q=
1
2
,其前4项和S4=60,则a2等于(  )
A.8B.12C.16D.20
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.