当前位置:高中试题 > 数学试题 > 等比数列 > 数列{an}中,a1=3,an+1=an+cn(c是常数,n=1,2,3,…),且a1,a2,a3成公比不为1的等比数列.(1)求c的值;(2)求数列{an}的...
题目
题型:不详难度:来源:
数列{an}中,a1=3,an+1=an+cn(c是常数,n=1,2,3,…),且a1,a2,a3成公比不为1的等比数列.
(1)求c的值;
(2)求数列{an}的通项公式.
答案
(1)c=0或c=3(2)an(n2-n+2)
解析
(1)a1=3,a2=3+c,a3=3+3c,
∵a1,a2,a3成等比数列,∴(3+c)2=3(3+3c),
解得c=0或c=3.
当c=0时,a1=a2=a3,不符合题意,舍去,故c=3.
(2)当n≥2时,由a2-a1=c,a3-a2=2c,…,an-an-1=(n-1)c,
则an-a1=[1+2+…+(n-1)]c=c.
又∵a1=3,c=3,∴an=3+n(n-1)=(n2-n+2)(n=2,3,…).
当n=1时,上式也成立,∴an(n2-n+2).
核心考点
试题【数列{an}中,a1=3,an+1=an+cn(c是常数,n=1,2,3,…),且a1,a2,a3成公比不为1的等比数列.(1)求c的值;(2)求数列{an}的】;主要考察你对等比数列等知识点的理解。[详细]
举一反三
等比数列{cn}满足cn+1+cn=10·4n-1(n∈N*),数列{an}的前n项和为Sn,且an=log2cn.
(1)求an,Sn
(2)数列{bn}满足bn,Tn为数列{bn}的前n项和,是否存在正整数m(m>1),使得T1,Tm,T6m成等比数列?若存在,求出所有m的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
设首项为1,公比为的等比数列{an}的前n项和为Sn,则(  )
A.Sn=2an-1 B.Sn=3an-2
C.Sn=4-3anD.Sn=3-2an

题型:不详难度:| 查看答案
已知等比数列{an}的公比为q,记bn=am(n-1)+1+am(n-1)+2+…+am(n-1)+m,cn=am(n-1)+1·am(n-1)+2·…·am(n-1)+m(m,n∈N*),则以下结论一定正确的是(  )
A.数列{bn}为等差数列,公差为qm
B.数列{bn}为等比数列,公比为q2m
C.数列{cn}为等比数列,公比为qm2
D.数列{cn}为等比数列,公比为qmm

题型:不详难度:| 查看答案
已知等比数列{an}的各项均为正数,若a1=3,前三项的和为21,则a4+a5+a6=________.
题型:不详难度:| 查看答案
已知数列{an}的前n项和为Sn,且Sn=4an-3(n∈N*).
(1)证明:数列{an}是等比数列;
(2)若数列{bn}满足bn+1=an+bn(n∈N*),且b1=2,求数列{bn}的通项公式.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.