当前位置:高中试题 > 数学试题 > 等差数列 > 已知函数f(x)=kx+m,当x∈[a1,b1]时,f(x)的值域为[a2,b2],当x∈[a2,b2]时,f(x)的值域为[a3,b3],依次类推,一般地,当...
题目
题型:上海模拟题难度:来源:
已知函数f(x)=kx+m,当x∈[a1,b1]时,f(x)的值域为[a2,b2],当x∈[a2,b2]时,f(x)的值域为[a3,b3],依次类推,一般地,当x∈[an-1,bn-1]时,f(x)的值域为[an,bn],其中k,m为常数,且a1=0,b1=1,
(Ⅰ)若k=1,求数列{an},{bn}的通项公式;
(Ⅱ)若m=2,问是否存在常数k>0,使得数列{bn}满足?若存在,求k的值;若不存在,请说明理由;
( Ⅲ)若k<0,设数列{an},{bn}的前n项和分别为Sn,Tn,求(T1+T2+…+ T2010)-(S1+S2+…+S2010)。
答案
解:(Ⅰ)因为f(x)=x+m,
当x∈[an-1,bn-1]时,f(x)为单调增函数,所以其值域为[an-1+m,bn-1+m],
于是an=an-1+m,bn=bn-1+m(n∈N*,n≥2),
又a1=0,b1=1,
所以an=(n-1)m,bn=1+(n-1)m。 
(Ⅱ)因为f(x)=kx+m(k>0),
当x∈[an-1,bn-1]时,f(x)为单调增函数,
所以f(x)的值域为[kan-1+m,kbn-1+m],
因m=2,则bn= kbn-1+2(n≥2),
假设存在k>0,使得数列{bn}满足
,得4=4k+2,则符合。
(Ⅲ)因为k<0,x∈[an-1,bn-1]时,f(x)为单调减函数,
所以f(x)的值域为[kbn-1+m,kan-1+m],
于是an=kbn-1+m,bn=kan-1+m(n∈N*,n≥2),
则bn-an=-k(bn-1-an-1),

则有
进而有

核心考点
试题【已知函数f(x)=kx+m,当x∈[a1,b1]时,f(x)的值域为[a2,b2],当x∈[a2,b2]时,f(x)的值域为[a3,b3],依次类推,一般地,当】;主要考察你对等差数列等知识点的理解。[详细]
举一反三
设等差数列{an}的前项n和为Sn,且a5+a13=34,S3=9,
(Ⅰ)求数列{an}的通项公式及前n项和公式;
(Ⅱ)设数列{bn}的通项公式为,问:是否存在正整数t,使得b1,b2,bm(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由。
题型:江苏模拟题难度:| 查看答案
设等差数列{an}满足a3=5,a10=-9.
(Ⅰ)求{an}的通项公式;
(Ⅱ)求{an}的前n项和Sn及使得Sn最大的序号n的值.
题型:高考真题难度:| 查看答案
已知{an}为等差数列,且a3=-6,a6=0,
(Ⅰ)求{an}的通项公式;
(Ⅱ)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求{bn}的前n项和公式.
题型:北京高考真题难度:| 查看答案
已知{an}是首项为19,公差为-2的等差数列,Sn为{an}的前n项和.
(Ⅰ)求通项an及Sn
(Ⅱ)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及其前n项和Tn
题型:重庆市高考真题难度:| 查看答案
已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(Ⅰ)求数列{an}的通项;
(Ⅱ)求数列的前n项和Sn
题型:陕西省高考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.