当前位置:高中试题 > 数学试题 > 等差数列 > 已知两个等差数列{an}:6,10,14,…;{bn}:2,7,12,…各100项,由它们的公共项所构成的数列的和为______....
题目
题型:不详难度:来源:
已知两个等差数列{an}:6,10,14,…;{bn}:2,7,12,…各100项,由它们的公共项所构成的数列的和为______.
答案
公共项构成的新数列{cn}是以c1=22为首项d=20为公差的等差数列,∴cn=20n+2.
∵an=4n+2,bn=5n-3,∴a100=402,b100=497.
∴20n+2≤402,∴n≤20,
∴公共项有20项,它们的和为S20=20×22+
20×19
2
×20=4240,
故答案为 4240.
核心考点
试题【已知两个等差数列{an}:6,10,14,…;{bn}:2,7,12,…各100项,由它们的公共项所构成的数列的和为______.】;主要考察你对等差数列等知识点的理解。[详细]
举一反三
已知数列{an}是等差数列,且a7-2a4=-1,a3=0,则d=______.
题型:不详难度:| 查看答案
已知数列{an}的通项公式an=5+3n,求:
(1)a7等于多少;
(2)81是否为数列{an}中的项,若是,是第几项;若不是,说明理由.
题型:不详难度:| 查看答案
已知等差数列{an}的公差d≠0,它的第1、5、17项顺次成等比数列,则这个等比数列的公比等于______.
题型:绵阳一模难度:| 查看答案
等差数列的第3项是7,第11项是-1,则它的第7项是______.
题型:不详难度:| 查看答案
已知数列{an}和等比数列{bn}满足:a1=b1=4,a2=b2=2,a3=1,且数列{an+1-an}是等差数列,n∈N*
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)问是否存在k∈N*,使得ak-bk∈(
1
2
,3]
?若存在,求出k的值;若不存在,请说明理由.
题型:成都二模难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.