当前位置:高中试题 > 数学试题 > 等差数列 > 已知i=(1,0),jn=(cos2nπ2,sinnπ2),Pn=(an,sinnπ2)(n∈N+),数列{an}满足:a1=1,a2=1,an+2=(i+jn...
题目
题型:不详难度:来源:
已知


i
=(1,0),


jn
=(cos2
2
,sin
2
),


Pn
=(an,sin
2
)(n∈N+),数列{an}
满足:a1=1,a2=1,an+2=(i+


jn
)•


Pn

(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.
答案
(I)an+2=(


i
+


jn
)•


Pn
=[(1,0)+(cos2
2
,sin
2
)]•(an,sin
2
)=(1+cos2
2
,sin
2
)•(an,sin
2
)

=(1+cos2
2
)an+sin
2
,…(2分)
当n=2k-1(k∈N*)时,
a2k+1=[1+cos2
(2k-1)π
2
]a2k-1+sin2
2k-1
2
π
=a2k-1+1,即a2k+1-a2k-1=1.
所以数列{a2k-1}是首项为1、公差为1的等差数列,…(4分)当n=2k(k∈N*)时,a2k+2=(1+cos2
2kπ
2
)a2k+sin2
2kπ
2
=2a2k

所以数列{a2k}是首项为2、公比为2的等比数列,…(6分)
(II)由(I)可知:a2k-1=k,a2k=2k
故数列{an}的通项公式为an=





n+1
2
,n=2k-1(k∈N*)
2
n
2
,n=2k(k∈N*).
…(7分)
当n为奇数时,(cosnπ)[f(n2)-λf(2n)]≥0⇔λ≥
f(n2)
f(2n)
=
n2+1
2n+1

令g(n)=
n2+1
2n-1
⇒g(n+1)-g(n)=
2n-n2
2n
<0⇒g(n+1)<g(n)
所以g(n)为单调递减函数,∴g(n)max=g(3)=
5
8
⇒λ≥
5
8
…(10分)
当n为偶数时,(cosnπ)[f(n2)-λf(2n)]≥0⇔λ≤
f(n2)
f(2n)
=2
(n-1)2-1
2

令h(n)=2
(n-1)2-1
2
,显然h(n)为单调递增函数,
h(n)min=h(2)=1⇒λ≤1
综上,λ的取值范围是[
5
8
,1]
…(12分)
核心考点
试题【已知i=(1,0),jn=(cos2nπ2,sinnπ2),Pn=(an,sinnπ2)(n∈N+),数列{an}满足:a1=1,a2=1,an+2=(i+jn】;主要考察你对等差数列等知识点的理解。[详细]
举一反三
已知数列{an}是公差为d的等差数列,且d≠0,数列{bn}是公比为q的等比数列,且a1=1,a2=b1,a5=b2,a14=b3,则d=______,q=______.
题型:不详难度:| 查看答案
已知a、b、c为等比数列,b、m、a和b、n、c是两个等差数列,则
a
m
+
c
n
=______.
题型:不详难度:| 查看答案
数列{an}中,a3=2,a7=1,且数列{
1
an+1
}是等差数列,则a11=______.
题型:武昌区模拟难度:| 查看答案
已知正数列{an}中的前n项和Sn满足2Sn=an2+an-2(n∈N*).
(1)求a1,a2,a3的值,并求{an}的通项公式;
(2)设bn=2n•an,求数列{bn}的前n项和Tn
(3)设cn=4n+(-1)n-1λ•2an(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,有cn+1>cn恒成立.
题型:不详难度:| 查看答案
已知数列{an}是等差数列a2+a8=16,a4=6,则a6=(  )
A.7B.8C.10D.12
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.