当前位置:高中试题 > 数学试题 > 等差数列 > 在一直线上共插有13面小旗,相邻两面之距离为,在第一面小旗处有某人把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路最短,应集中到哪一面小旗的位...
题目
题型:不详难度:来源:
在一直线上共插有13面小旗,相邻两面之距离为,在第一面小旗处有某人把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路最短,应集中到哪一面小旗的位置上?最短路程是多少?
答案
将旗集中以第7面小旗处,所走路程最短
解析
本题求走的总路程最短,是一个数列求和问题,而如何求和是关键,应先画一草图,研究他从第一面旗到另一面旗处走的路程,然后求和.
设将旗集中到第面小旗处,则从第一面旗到第面旗处,共走路程为,然后回到第二面处再到第面处是,从第面处到第面处路程为20,从第面处到第面取旗再到第面处,路程为,总的路程:




.
由于,当时,有最小值.
答: 将旗集中以第7面小旗处,所走路程最短.
核心考点
试题【在一直线上共插有13面小旗,相邻两面之距离为,在第一面小旗处有某人把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路最短,应集中到哪一面小旗的位】;主要考察你对等差数列等知识点的理解。[详细]
举一反三
2008年底某县的绿化面积占全县总面积的%,从2009年开始,计划每年将非绿化面积的8%绿化,由于修路和盖房等用地,原有绿化面积的2%被非绿化.
⑴设该县的总面积为1,2008年底绿化面积为,经过年后绿化的面积为,试用表示
⑵求数列的第
⑶至少需要多少年的努力,才能使绿化率超过60%(参考数据:)
题型:不详难度:| 查看答案
四个实数,前三个数成等比数列,其和为19,后三个数成等差数列,其和为12,求原来的四个数.
题型:不详难度:| 查看答案
数列首项,前项和之间满足
(1)求证:数列是等差数列  (2)求数列的通项公式
(3)设存在正数,使对于一切都成立,求的最大值。
题型:不详难度:| 查看答案
夏季高山上的温度从脚起,每升高,降低℃,已知山顶处的温度是℃,山脚处的温度为℃,问此山相对于山脚处的高度是多少米.
题型:不详难度:| 查看答案

已知等差数列的前项和为,公差成等比数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)若从数列中依次取出第2项、第4项、第8项,……,,……,按原来顺序组成一个新数列,记该数列的前项和为,求的表达式.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.