当前位置:高中试题 > 数学试题 > 等差数列 > (理)已知等差数列的公差是,是该数列的前项和.(1)试用表示,其中、均为正整数;(2)利用(1)的结论求解:“已知,求”;(3)若数列前项的和分别为,试将问题(...
题目
题型:不详难度:来源:
(理)已知等差数列的公差是是该数列的前项和.
(1)试用表示,其中均为正整数;
(2)利用(1)的结论求解:“已知,求”;
(3)若数列项的和分别为,试将问题(1)推广,探究相应的结论. 若能证明,则给出你的证明并求解以下给出的问题;若无法证明,则请利用你的研究结论和另一种方法计算以下给出的问题,从而对你猜想的可靠性作出自己的评价.问题:“已知等差数列的前项和,前项和,求数列的前2010项的和.”
答案

解析

(1)解:不妨设,则有



∴ .
(2)(文科)解法一:由条件,可得
得:,由(1)中结论得:

解法二:,则

(理)由条件,可得
得:

.
(3)(理科)推广的结论为:若公差为的等差数列的前项和为
则该数列的前项和为:
+                    
…………(
对正整数,可用数学归纳法证明如下:
1时,由问题(1)知,等式()成立;
2假设当时结论成立,即


时,





这表明对等式()也成立;
根据1、2知,对一切正整数,()式都成立.
利用以上结论,问题解法如下:

则利用探究结论可得:.
不利用以上结论,解法如下:

得:
代入①可得.
所以,.
核心考点
试题【(理)已知等差数列的公差是,是该数列的前项和.(1)试用表示,其中、均为正整数;(2)利用(1)的结论求解:“已知,求”;(3)若数列前项的和分别为,试将问题(】;主要考察你对等差数列等知识点的理解。[详细]
举一反三
(文)已知等差数列的公差是是该数列的前项和.
(1)求证:
(2)利用(1)的结论求解:“已知,求”;
(3)若各项均为正数的等比数列的公比为,前项和为.试类比问题(1)的结论,给出一个相应的结论并给出证明.并利用此结论求解问题:“已知各项均为正数的等比数列,其中,求数列的前项和.”
题型:不详难度:| 查看答案
已知数列满足,且对任意的正整数,都有,则等于( )
A.B.C.D.

题型:不详难度:| 查看答案
数列中,,对于函数(其中),有,则数列的通项公式为__________
题型:不详难度:| 查看答案
(本小题满分12分)
已知等差数列满足:.的前 项和为
(Ⅰ)求
(Ⅱ)令,求数列的前项和.
题型:不详难度:| 查看答案
(本小题满分14分)
已知函数,对于任意的,都有.
(Ⅰ)求的取值范围;
(Ⅱ)若,证明
(Ⅲ)在(Ⅱ)的条件下证明.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.