2010年,我国南方省市遭遇旱涝灾害,为防洪抗旱,某地区大面积植树造林,如图,在区域内植树,第一棵树在点,第二棵树在点,第三棵树在点,第四棵树在点,接着按图中箭头方向,每隔一个单位种一颗树,那么,第2014棵树所在的点的坐标是( ) A.(9,44) | B.(10,44) | C.(10.43) | D.(11,43) |
B |
试题分析:由题意可得种树的方法是按照一个等差数列3,5,7,…,2n+1排列.由前n项和得.所以..所以当n=43对应种了1935棵树.由于单数的最后一个落在x轴上.双数的最后一个落在y轴.在坐标为(43,0)向上种44棵即第1979棵的坐标为(44,44).再向左平行移动35格.即第2014棵.及坐标为(10,44)故选B.本题的关键是发现两个规律其一是n为单数时最后一个落在哪个轴上.其二是两个数之间的个数问题. | 核心考点
试题【2010年,我国南方省市遭遇旱涝灾害,为防洪抗旱,某地区大面积植树造林,如图,在区域内植树,第一棵树在点,第二棵树在点,第三棵树在点,第四棵树在点,接着按图中箭】;主要考察你对 等差数列等知识点的理解。 [详细]
举一反三
等差数列中,,公差,且它的第2项,第5项,第14项分别是等比数列的第2项,第3项,第4项. (Ⅰ)求数列与的通项公式; (Ⅱ)设数列对任意自然数均有成立,求的值. | 设数列的前项和为,且. (1)证明:数列是等比数列; (2)若数列满足,求数列的前项和为. | 现在市面上有普通型汽车(以汽油为燃料)和电动型汽车两种。某品牌普通型汽车车价为12万元,第一年汽油的消费为6000元,随着汽油价格的不断上升,汽油的消费每年以20%的速度增长。其它费用(保险及维修费用等)第一年为5000元,以后每年递增2000元。而电动汽车由于节能环保,越来越受到社会认可。某品牌电动车在某市上市,车价为25万元,购买时一次性享受国家补贴价6万元和该市市政府补贴价4万元。电动汽车动力不靠燃油,而靠电池。电动车使用的普通锂电池平均使用寿命大约两年(也即两年需更换电池一次),电池价格为1万元,电动汽车的其它费用每年约为5000元。 求使用年,普通型汽车的总耗资费(万元)的表达式 (总耗资费=车价+汽油费+其它费用) 比较两种汽车各使用10年的总耗资费用 (参考数据: ) | 在等差数列中,若,则该数列的前15项的和为 . | 已知数列满足,且对任意非负整数均有:. (1)求; (2)求证:数列是等差数列,并求的通项; (3)令,求证:. |
|