当前位置:高中试题 > 数学试题 > 等差数列 > 已知集合,,设是等差数列的前项和,若的任一项,且首项是中的最大数, .(1)求数列的通项公式;(2)若数列满足,求的值....
题目
题型:不详难度:来源:
已知集合,,设是等差数列的前项和,若的任一项,且首项中的最大数, .
(1)求数列的通项公式;
(2)若数列满足,求的值.
答案
(1));(2).
解析

试题分析:(1)首先由题设知: 集合中所有元素可以组成以为首项,为公差的递减等差数列;集合中所有的元素可以组成以为首项,为公差的递减等差数列.
得到中的最大数为,得到等差数列的首项.
通过设等差数列的公差为,建立的方程组,
根据,求得
由于中所有的元素可以组成以为首项,为公差的递减等差数列,
所以,由,得到.
(2)由(1)得到
于是可化为等比数列的求和.
试题解析:(1)由题设知: 集合中所有元素可以组成以为首项,为公差的递减等差数列;集合中所有的元素可以组成以为首项,为公差的递减等差数列.
由此可得,对任意的,有
中的最大数为,即             3分
设等差数列的公差为,则,
因为, ,即
由于中所有的元素可以组成以为首项,为公差的递减等差数列,
所以,由,所以 
所以数列的通项公式为)        8分
(2)           9分
于是有   

     12分
核心考点
试题【已知集合,,设是等差数列的前项和,若的任一项,且首项是中的最大数, .(1)求数列的通项公式;(2)若数列满足,求的值.】;主要考察你对等差数列等知识点的理解。[详细]
举一反三
已知无穷数列{an}的各项均为正整数,Sn为数列{an}的前n项和.
(1)若数列{an}是等差数列,且对任意正整数n都有Sn3=(Sn)3成立,求数列{an}的通项公式;
(2)对任意正整数n,从集合{a1a2,…,an}中不重复地任取若干个数,这些数之间经过加减运算后所得数的绝对值为互不相同的正整数,且这些正整数与a1a2,…,an一起恰好是1至Sn全体正整数组成的集合.
(ⅰ)求a1a2的值;
(ⅱ)求数列{an}的通项公式.
题型:不详难度:| 查看答案
设{an}是公差为正数的等差数列,若a1a2a3=15,a1a2a3=80,则a11a12a13=________.
题型:不详难度:| 查看答案
Sn是等差数列{an}的前n项和,若,则=________.
题型:不详难度:| 查看答案
设等差数列{an}的前n项和为SnSm-1=-2,Sm=0,Sm+1=3,则m等于________.
题型:不详难度:| 查看答案
在等差数列{an}中,a10<0,a11>0,且a11>|a10|,则{an}的前n项和Sn中最大的负数为前______项的和.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.